Advertisement

Enhancing Layered Enterprise Architecture Development Through Conceptual Structures

  • Simon PolovinaEmail author
  • Mark von Rosing
  • Wim Laurier
  • Georg Etzel
Conference paper
  • 407 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11530)

Abstract

Enterprise Architecture (EA) enables organisations to align their information technology with their business needs. Layered EA Development (LEAD) enhances EA by using meta-models made up of layered meta-objects, interconnected by semantic relations. Organisations can use these meta-models to benefit from a novel, ontology-based, object-oriented way of EA thinking and working. Furthermore, the meta-models are directed graphs that can be read linearly from a Top Down View (TDV) or a Bottom Up View (BUV) perspective. Conceptual Structures through CG-FCA (where CG refers to Conceptual Graph and FCA to Formal Concept Analysis) is thus used to traverse the TDV and BUV directions using the LEAD Industry 4.0 meta-model as an illustration. The motivation for CG-FCA is stated. It is discovered that CG-FCA: (a) identifies any unwanted cycles in the ‘top-down’ or ‘bottom-up’ directions, and (b) conveniently arranges the many pathways by which the meta-models can be traversed and understood in a Formal Concept Lattice. Through the LEAD meta-model exemplar, the wider appeal of CG-FCA and directed graphs are also identified.

References

  1. 1.
    Andrews, S., Hirsch, L.: A tool for creating and visualising formal concept trees. In: CEUR Workshop Proceedings, vol. 1637, pp. 1–9 (2016)Google Scholar
  2. 2.
    Andrews, S., Polovina, S.: A mapping from conceptual graphs to formal concept analysis. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 63–76. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22688-5_5CrossRefGoogle Scholar
  3. 3.
    Andrews, S., Polovina, S.: Exploring, reasoning with and validating directed graphs by applying formal concept analysis to conceptual graphs. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775, pp. 3–28. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78102-0_1CrossRefGoogle Scholar
  4. 4.
    Box, G.E.P., Draper, N.R.: Empirical Model-building and Response Surfaces. Wiley, Hoboken (1987)Google Scholar
  5. 5.
    Caine, J., Polovina, S.: From enterprise concepts to formal concepts: a university case study. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775, pp. 84–96. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78102-0_5CrossRefGoogle Scholar
  6. 6.
    The Open Group. 30. Content Metamodel (2018). http://pubs.opengroup.org/architecture/togaf92-doc/arch/chap30.html
  7. 7.
    Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 13–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12206-9_2CrossRefGoogle Scholar
  8. 8.
    Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16(6), 1811–1841 (1994)CrossRefGoogle Scholar
  9. 9.
    Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W.M., Cyre, W. (eds.) ICCS-ConceptStruct 1999. LNCS (LNAI), vol. 1640, pp. 423–441. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48659-3_27CrossRefGoogle Scholar
  10. 10.
    Polovina, S.: An introduction to conceptual graphs. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS-ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 1–14. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73681-3_1CrossRefGoogle Scholar
  11. 11.
    Polovina, S., von Rosing, M.: Using conceptual structures in enterprise architecture to develop a new way of thinking and working for organisations. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 176–190. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91379-7_14CrossRefGoogle Scholar
  12. 12.
    Priss, U.: Formal concept analysis in information science. Annu. Rev. Info. Sci. Technol. 40(1), 521–543 (2006)CrossRefGoogle Scholar
  13. 13.
    Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67, 81–108 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    von Rosing, M., Laurier, W.: An introduction to the business ontology. Int. J. Concept. Struct. Smart Appl. (IJCSSA) 3(1), 20–41 (2015)Google Scholar
  15. 15.
    Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0027878CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Simon Polovina
    • 1
    Email author
  • Mark von Rosing
    • 2
  • Wim Laurier
    • 3
  • Georg Etzel
    • 4
  1. 1.Conceptual Structures Research GroupSheffield Hallam UniversitySheffieldUK
  2. 2.Global University Alliance, Chateau Du Grand PerrayLa Bruere Sur LoirFrance
  3. 3.Université Saint-Louis – BruxellesBrusselsBelgium
  4. 4.LEADing Practice ApSAugsburgGermany

Personalised recommendations