Skip to main content

Selected Golgi-Localized Proteins and Carcinogenesis: What Do We Know?

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 67))

Abstract

The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a “metabolic heart” or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrham G, Volpe M, Shpungin S, Nir U (2009) TMF/ARA160 downregulates proangiogenic genes and attenuates the progression of PC3 xenografts. Int J Cancer 125:43–53

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Chu J, Eli M, Bao Y, Wen J (2017) PAQR3 overexpression suppresses the aggressive phenotype of esophageal squamous cell carcinoma cells via inhibition of ERK signaling. Biomed Pharmacother 94:813–819

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Cui X, Gao D, Wang Y, Wang B, Wang W (2018a) Golgi integral membrane protein 4 manipulates cellular proliferation, apoptosis, and cell cycle in human head and neck cancer. Biosci Rep 38:BSR20180454

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai G, Yang M, Zheng C, Zhang L, Eli M (2018b) Suppressor PAQR3 associated with the clinical significance and prognosis in esophageal squamous cell carcinoma. Oncol Lett 15:5703–5711

    PubMed  PubMed Central  Google Scholar 

  • Bammens R, Mehta N, Race V, Foulquier F, Jaeken J, Tiemeyer M, Steet R, Matthijs G, Flanagan-Steet H (2015) Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG. Glycobiology 25:669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso M, Nelson DS, Sztul E (1995) Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc Natl Acad Sci USA 92:527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baschieri F, Confalonieri S, Bertalot G, Di Fiore PP, Dietmaier W, Leist M, Crespo P, Macara IG, Farhan H (2014) Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun 5:4839

    Article  CAS  PubMed  Google Scholar 

  • Baschieri F, Uetz-von Allmen E, Legler DF, Farhan H (2015) Loss of GM130 in breast cancer cells and its effects on cell migration, invasion and polarity. Cell Cycle 14:1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascom RA, Srinivasan S, Nussbaum RL (1999) Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. J Biol Chem 274:2953–2962

    Article  CAS  PubMed  Google Scholar 

  • Beischlag TV, Taylor RT, Rose DW, Yoon D, Chen Y, Lee WH, Rosenfeld MG, Hankinson O (2004) Recruitment of thyroid hormone receptor/retinoblastoma-interacting protein 230 by the aryl hydrocarbon receptor nuclear translocator is required for the transcriptional response to both dioxin and hypoxia. J Biol Chem 279:54620–54628

    Article  CAS  PubMed  Google Scholar 

  • Bekier ME 2nd, Wang L, Li J, Huang H, Tang D, Zhang X, Wang Y (2017) Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol Biol Cell 28(21):2833–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron JJM, Au CE, Thomas DY, Hermo L (2017) Proteomics identifies Golgi phosphoprotein 3 (GOLPH3) with a link between Golgi structure, cancer, DNA damage and protection from cell death. Mol Cell Proteomics 16:2048–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat G, Hothpet VR, Lin MF, Cheng PW (2017) Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells. Biochim Biophys Acta Gen Subj 1861:2891–2901

    Article  CAS  PubMed  Google Scholar 

  • Blank B, von Blume J (2017) Cab45-Unraveling key features of a novel secretory cargo sorter at the trans-Golgi network. Eur J Cell Biol 96:383–390

    Article  CAS  PubMed  Google Scholar 

  • Brémond A, Meynet O, Mahiddine K, Coito S, Tichet M, Scotlandi K, Breittmayer JP, Gounon P, Gleeson PA, Bernard A, Bernard G (2009) Regulation of HLA class I surface expression requires CD99 and p230/golgin-245 interaction. Blood 113:347–357

    Article  PubMed  CAS  Google Scholar 

  • Burguete AS, Fenn TD, Brunger AT, Pfeffer SR (2008) Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell 132:286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschman MD, Rahajeng J, Field SJ (2015a) GOLPH3 links the Golgi, DNA damage, and cancer. Cancer Res 75:624–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschman MD, Xing M, Field SJ (2015b) The GOLPH3 pathway regulates Golgi shape and function and is activated by DNA damage. Front Neurosci 9:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan WL, Steiner M, Witkos T, Egerer J, Busse B, Mizumoto S, Pestka JM, Zhang H, Hausser I, Khayal LA, Ott CE, Kolanczyk M, Willie B, Schinke T, Paganini C, Rossi A, Sugahara K, Amling M, Knaus P, Chan D, Lowe M, Mundlos S, Kornak U (2018) Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLoS Genet 14:e1007242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang SH, Hong SH, Jiang HL, Minai-Tehrani A, Yu KN, Lee JH, Kim JE, Shin JY, Kang B, Park S, Han K, Chae C, Cho MH (2012) GOLGA2/GM130, cis-Golgi matrix protein, is a novel target of anticancer gene therapy. Mol Ther 20:2052–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen PL, Chen CF, Sharp ZD, Lee WH (1999) Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus. Proc Natl Acad Sci USA 96:4443–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang F, Xu J, He Z, Lu Y, Wang Z (2016) The role of PAQR3 gene promoter hypermethylation in breast cancer and prognosis. Oncol Rep 36:1612–1618

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Kwon CH, Lee SJ, Park J, Shin JY, Park DY (2018) Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer. Br J Cancer 119:230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darby S, Sahadevan K, Khan MM, Robson CN, Leung HY, Gnanapragasam VJ (2006) Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer. Oncogene 25:4122–4127

    Article  CAS  PubMed  Google Scholar 

  • Darby S, Murphy T, Thomas H, Robson CN, Leung HY, Mathers ME, Gnanapragasam VJ (2009) Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease. Br J Cancer 101:1891–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, Monteith GR (2013) Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int 13:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derby MC, van Vliet C, Brown D, Luke MR, Lu L, Hong W, Stow JL, Gleeson PA (2004) Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN. J Cell Sci 117:5865–5874

    Article  CAS  PubMed  Google Scholar 

  • Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8:758–773

    Article  CAS  PubMed  Google Scholar 

  • Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M (2003) The coiled-coil membrane protein golgin-84 is a novel Rab effector required for Golgi ribbon formation. J Cell Biol 160:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Du K (2009) ClipR-59 interacts with Akt and regulates Akt cellular compartmentalization. Mol Cell Biol 29:1459–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Liu Y, Yao L, Wang D, Zhang J, Cui G, Yang X, Huang X, Liu F, Shen A (2015) Spy1 induces de-ubiquitinating of RIP1 arrest and confers glioblastoma’s resistance to tumor necrosis factor (TNF-α)-induced apoptosis through suppressing the association of CLIPR-59 and CYLD. Cell Cycle 14:2149–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donizy P, Kaczorowski M, Biecek P, Halon A, Szkudlarek T, Matkowski R (2016) Golgi-related proteins GOLPH2 (GP73/GOLM1) and GOLPH3 (GOPP1/MIDAS) in cutaneous melanoma: patterns of expression and prognostic significance. Int J Mol Sci 17:e1619

    Article  PubMed  CAS  Google Scholar 

  • Duan J, Li X, Huang S, Zeng Y, He Y, Liu H, Lin D, Lu D, Zheng M (2018) GOLPH2, a gene downstream of ras signaling, promotes the progression of pancreatic ductal adenocarcinoma. Mol Med Rep 17:4187–4194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duhamel S, Hébert J, Gaboury L, Bouchard A, Simon R, Sauter G, Basik M, Meloche S (2012) Sef downregulation by Ras causes MEK1/2 to become aberrantly nuclear localized leading to polyploidy and neoplastic transformation. Cancer Res 72:626–635

    Article  CAS  PubMed  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egerer J, Emmerich D, Fischer-Zirnsak B, Chan WL, Meierhofer D, Tuysuz B, Marschner K, Sauer S, Barr FA, Mundlos S, Kornak U (2015) GORAB missense mutations disrupt RAB6 and ARF5 binding and Golgi targeting. J Invest Dermatol 135:2368–2376

    Article  CAS  PubMed  Google Scholar 

  • Fan F, Feng L, He J, Wang X, Jiang X, Zhang Y, Wang Z, Chen Y (2008) RKTG sequesters B-Raf to the Golgi apparatus and inhibits the proliferation and tumorigenicity of human malignant melanoma cells. Carcinogenesis 29:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Xie X, Ding Q, Luo X, He J, Fan F, Liu W, Wang Z, Chen Y (2007) Spatial regulation of Raf kinase signaling by RKTG. Proc Natl Acad Sci U S A 104:14348–14353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, Race V, Bammens R, Morelle W, Rosnoblet C, Legrand D, Demaegd D, Buist N, Cheillan D, Guffon N, Morsomme P, Annaert W, Freeze HH, Van Schaftingen E, Vikkula M, Matthijs G (2012) TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 91:15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridmann-Sirkis Y, Siniossoglou S, Pelham HR (2004) TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzler MJ, Lung CC, Hamel JC, Griffith KJ, Chan EK (1995) Molecular characterization of Golgin-245, a novel Golgi complex protein containing a granin signature. J Biol Chem 270:31262–31268

    Article  CAS  PubMed  Google Scholar 

  • Fuchs Y, Brunwasser M, Haif S, Haddad J, Shneyer B, Goldshmidt-Tran O, Korsensky L, Abed M, Zisman-Rozen S, Koren L, Carmi Y, Apte R, Yang RB, Orian A, Bejar J, Ron D (2012) Sef is an inhibitor of proinflammatory cytokine signaling, acting by cytoplasmic sequestration of NF-κB. Dev Cell 23:611–623

    Article  CAS  PubMed  Google Scholar 

  • Fujikura D, Ito M, Chiba S, Harada T, Perez F, Reed JC, Uede T, Miyazaki T (2012) CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1. Cell Death Dis 3:e264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Mata R, Sztul E (2003) The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor. EMBO Rep 4:320–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillingham AK, Pfeifer AC, Munro S (2002) CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell 13:3761–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA (2018) The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 131:jcs211987

    Article  CAS  PubMed  Google Scholar 

  • Grice DM, Vetter I, Faddy HM, Kenny PA, Roberts-Thomson SJ, Monteith GR (2010) Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem 285:37458–37466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinea B, Ligos JM, Laín de Lera T, Martín-Caballero J, Flores J, Gonzalez de la Peña M, García-Castro J, Bernad A (2006) Nucleocytoplasmic shuttling of STK16 (PKL12), a Golgi-resident serine/threonine kinase involved in VEGF expression regulation. Exp Cell Res 312:135–144

    Article  CAS  PubMed  Google Scholar 

  • Guo W, You X, Xu D, Zhang Y, Wang Z, Man K, Wang Z, Chen Y (2016) PAQR3 enhances Twist1 degradation to suppress epithelial-mesenchymal transition and metastasis of gastric cancer cells. Carcinogenesis 37:397–407

    Article  CAS  PubMed  Google Scholar 

  • Hayes GL, Brown FC, Haas AK, Nottingham RM, Barr FA, Pfeffer SR (2009) Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi. Mol Biol Cell 20:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Gong Y, Gower L, Yang X, Friesel RE (2016) Sef regulates epithelial-mesenchymal transition in breast cancer cells. J Cell Biochem 117:2346–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennies HC, Kornak U, Zhang H, Egerer J, Zhang X, Seifert W, Kühnisch J, Budde B, Nätebus M, Brancati F, Wilcox WR, Müller D, Kaplan PB, Rajab A, Zampino G, Fodale V, Dallapiccola B, Newman W, Metcalfe K, Clayton-Smith J, Tassabehji M, Steinmann B, Barr FA, Nürnberg P, Wieacker P, Mundlos S (2008) Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat Genet 40:1410–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–735

    Article  CAS  PubMed  Google Scholar 

  • Hewavitharana T, Wedegaertner PB (2015) PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Cell Signal 27:2444–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann HH, Schneider WM, Blomen VA, Scull MA, Hovnanian A, Brummelkamp TR, Rice CM (2017) Diverse viruses require the calcium transporter SPCA1 for maturation and spread. Cell Host Microbe 22:460–470.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton FJ, Chew PL, Lodeho S, Goud B, Gleeson PA (2009) The localization of the Golgin GCC185 is independent of Rab6A/A’ and Arl1. Cell 138:787–794

    Article  CAS  PubMed  Google Scholar 

  • Howley BV, Howe PH (2018) Metastasis-associated upregulation of ER-Golgi trafficking kinetics: regulation of cancer progression via the Golgi apparatus. Oncoscience 5:142–143

    PubMed  PubMed Central  Google Scholar 

  • Howley BV, Link LA, Grelet S, El-Sabban M, Howe PH (2018) A CREB3-regulated ER-Golgi trafficking signature promotes metastatic progression in breast cancer. Oncogene 37:1308–1325

    Article  CAS  PubMed  Google Scholar 

  • Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, Lin JW, Cheng HY, Li PY, Yu CJ (2018) Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity. Cell Commun Signal 16:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang S, Wang Y (2017) Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 6:2050

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Guo W, You X, Pan Y, Dong Z, Jia G, Yang C, Chen Y (2016) PAQR3 suppresses the proliferation, migration and tumorigenicity of human prostate cancer cells. Oncotarget 33:53948–53958

    Google Scholar 

  • Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM (1999) GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol 145:83–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ise M, Kageyama H, Araki A, Itami M (2018) Identification of a novel GORASP2-ALK fusion in an ALK-positive large B-cell lymphoma. Leuk Lymphoma 6:1–5

    Google Scholar 

  • Jiang Y, Xie X, Zhang Y, Luo X, Wang X, Fan F, Zheng D, Wang Z, Chen Y (2010) Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Mol Cell Biol 30:78–90

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Xie X, Li Z, Wang Z, Zhang Y, Ling ZQ, Pan Y, Wang Z, Chen Y (2011) Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition. Cancer Res 71:2959–2968

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Su Y, Zhao Y, Pan C, Chen L (2015) Golgi phosphoprotein3 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis. Int J Clin Exp Pathol 8:10615–10624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Dai Z (2016) USO1 promotes tumor progression via activating Erk pathway in multiple myeloma cells. Biomed Pharmacother 78:264–271

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Ding Q, Huang H, Xu D, Jiang Y, Zhou B, Li Z, Jiang X, He J, Liu W, Zhang Y, Pan Y, Wang Z, Thomas WG, Chen Y (2012) PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus. Cell Res 22:661–676

    Article  CAS  PubMed  Google Scholar 

  • Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R (2010) FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 21:3041–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joachim J, Jefferies HB, Razi M, Frith D, Snijders AP, Chakravarty P, Judith D, Tooze SA (2015) Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol Cell 60:899–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju Q, Zhao Y, Liu Y, Zhou G, Li F, Xie P, Li Y, Li GC (2013) Monoclonal antibody preparation of Golgi phosphoprotein 2 and preliminary application in the early diagnosis of hepatocellular carcinoma. Mol Med Rep 8:517–522

    Article  PubMed  Google Scholar 

  • Kienzle C, Basnet N, Crevenna AH, Beck G, Habermann B, Mizuno N, von Blume J (2014) Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. J Cell Biol 206:635–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Hill A, Warman ML, Smits P (2012a) Golgi disruption and early embryonic lethality in mice lacking USO1. PLoS One 7:e50530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Lv D, Zhang Y, Peng T, Ma X (2012b) Golgi phosphoprotein 2 in physiology and in diseases. Cell Biosci 2:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodani A, Kristensen I, Huang L, Sütterlin C (2009) GM130-dependent control of Cdc42 activity at the Golgi regulates centrosome organization. Mol Biol Cell 20:1192–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koreishi M, Gniadek TJ, Yu S, Masuda J, Honjo Y, Satoh A (2013) The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. PLoS One 8:e59821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs L, Chao-Chu J, Schneider S, Gottardo M, Tzolovsky G, Dzhindzhev NS, Riparbelli MG, Callaini G, Glover DM (2018) Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nat Genet 50:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurahashi H, Akagi K, Inazawa J, Ohta T, Niikawa N, Kayatani F, Sano T, Okada S, Nishisho I (1995) Isolation and characterization of a novel gene deleted in DiGeorge syndrome. Hum Mol Genet 4:541–549

    Article  CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach V, Quesnoit M, Braun V, El Marjou A, Poüs C, Goud B, Perez F (2004) CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule dynamics. J Biol Chem 279:41168–41178

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Kim MY, Park ER, Shen YN, Jeon JY, Cho EH, Park SH, Han CJ, Choi DW, Jang JJ, Suh KS, Hong J, Kim SB, Lee KH (2018) TMEM165, a Golgi transmembrane protein, is a novel marker for hepatocellular carcinoma and its depletion impairs invasion activity. Oncol Rep 40:1297–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Ling ZQ, Guo W, Lu XX, Pan Y, Wang Z, Chen Y (2015) PAQR3 expression is downregulated in human breast cancers and correlated with HER2 expression. Oncotarget 6:12357–12368

    PubMed  PubMed Central  Google Scholar 

  • Li RH, Zhang AM, Li S, Li TY, Wang LJ, Zhang HR, Shi JW, Liu XR, Chen Y, Chen YC, Wei TY, Gao Y, Li W, Tang HY, Tang MY (2016) PAQR3 gene expression and its methylation level in colorectal cancer tissues. Oncol Lett 12:1773–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li M, Chen D, Shi G, Zhao H (2018a) PAQR3 inhibits proliferation via suppressing PI3K/AKT signaling pathway in non-small cell lung cancer. Arch Med Sci 14:1289–1297

    Article  PubMed  Google Scholar 

  • Li H, Yang LL, Xiao Y, Deng WW, Chen L, Wu L, Zhang WF, Sun ZJ (2018b) Overexpression of Golgi phosphoprotein 2 is associated with poor prognosis in oral squamous cell carcinoma. Am J Clin Pathol 150:74–83

    Article  PubMed  Google Scholar 

  • Lieu ZZ, Gleeson PA (2010) Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 89:379–393

    Article  CAS  PubMed  Google Scholar 

  • Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA (2007) The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 18:4979–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieu ZZ, Lock JG, Hammond LA, La Gruta NL, Stow JL, Gleeson PA (2008) A trans-Golgi network golgin is required for the regulated secretion of TNF in activated macrophages in vivo. Proc Natl Acad Sci U S A 105:3351–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YC, Chiang TC, Liu YT, Tsai YT, Jang LT, Lee FJ (2011) ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci 124:4014–4026

    Article  CAS  PubMed  Google Scholar 

  • Ling ZQ, Guo W, Lu XX, Zhu X, Hong LL, Wang Z, Wang Z, Chen Y (2014) A Golgi-specific protein PAQR3 is closely associated with the progression, metastasis and prognosis of human gastric cancers. Ann Oncol 25:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Liu KC, Lin BS, Zhao M, Wang KY, Lan XP (2013) Cutl1: a potential target for cancer therapy. Cell Signal 25:349–354

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhang Y, He F, Li J, Wei X, Li Y, Liao X, Sun J, Yi W, Niu D (2014) Expression of GOLPH2 is associated with the progression of and poor prognosis in gastric cancer. Oncol Rep 32:2077–2085

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Snedecor ER, Choi YJ, Yang N, Zhang X, Xu Y, Han Y, Jones EC, Shroyer KR, Clark RA, Zhang L, Qin C, Chen J (2016) Gorab is required for dermal condensate cells to respond to hedgehog signals during hair follicle morphogenesis. J Invest Dermatol 136:378–386

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang X, Li B, Wang J, Wang W, Liu J, Liu Q, Zhang X (2017) STK16 regulates actin dynamics to control Golgi organization and cell cycle. Sci Rep 7:44607

    Article  PubMed  PubMed Central  Google Scholar 

  • Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL (2005) E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Lounglaithong K, Bychkov A, Sampatanukul P (2018) Aberrant promoter methylation of the PAQR3 gene is associated with prostate cancer. Pathol Res Pract 214:126–129

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Hong W (2003) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14:3767–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell 15:4426–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Tai G, Hong W (2005) Interaction of Arl1 GTPase with the GRIP domain of Golgin-245 as assessed by GST (glutathione-S-transferase) pull-down experiments. Methods Enzymol 404:432–441

    Article  CAS  PubMed  Google Scholar 

  • Lührig S, Kolb S, Mellies N, Nolte J (2013) The novel BTB-kelch protein, KBTBD8, is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. Cell Div 8:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, Gleeson PA (2003) GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem 278:4216–4226

    Article  CAS  PubMed  Google Scholar 

  • Luke MR, Houghton F, Perugini MA, Gleeson PA (2005) The trans-Golgi network GRIP-domain proteins form alpha-helical homodimers. Biochem J 388:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Wang Y, Piao T, Li Z, Zhang H, Liu Z, Liu J (2015) The tumor suppressor role of PAQR3 in osteosarcoma. Tumour Biol 36:3319–3324

    Article  CAS  PubMed  Google Scholar 

  • MacNeil AJ, Pohajdak B (2009) Getting a GRASP on CASP: properties and role of the cytohesin-associated scaffolding protein in immunity. Immunol Cell Biol 87:72–80

    Article  CAS  PubMed  Google Scholar 

  • Makowski SL, Tran TT, Field SJ (2017) Emerging themes of regulation at the Golgi. Curr Opin Cell Biol 45:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee LJ, Jiang AL, Lan Y (2017) Golga5 is dispensable for mouse embryonic development and postnatal survival. Genesis 55. https://doi.org/10.1002/dvg.23039

    Article  CAS  Google Scholar 

  • Meyer S, Nolte J, Opitz L, Salinas-Riester G, Engel W (2010) Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes. Mol Hum Reprod 16:846–855

    Article  CAS  PubMed  Google Scholar 

  • Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L (2016) ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 7:e2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millarte V, Farhan H (2012) The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. Sci World J 2012:498278

    Article  CAS  Google Scholar 

  • Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, Callewaert G, De Smedt H, Segaert S, Wuytack F (2004) SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 332:1204–1213

    Article  CAS  Google Scholar 

  • Mo P, Yang S (2018) The store-operated calcium channels in cancer metastasis: from cell migration, invasion to metastatic colonization. Front Biosci (Landmark Ed) 23:1241–1256

    Article  CAS  Google Scholar 

  • Mori K, Kato H (2002) A putative nuclear receptor coactivator (TMF/ARA160) associates with hbrm/hSNF2 alpha and BRG-1/hSNF2 beta and localizes in the Golgi apparatus. FEBS Lett 520:127–132

    Article  CAS  PubMed  Google Scholar 

  • Murphy T, Darby S, Mathers ME, Gnanapragasam VJ (2010) Evidence for distinct alterations in the FGF axis in prostate cancer progression to an aggressive clinical phenotype. J Pathol 220:452–460

    CAS  PubMed  Google Scholar 

  • Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J (2006) The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem 281:5065–5671

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89:445–455

    Article  CAS  PubMed  Google Scholar 

  • Naumann N, Schwaab J, Metzgeroth G, Jawhar M, Haferlach C, Göhring G, Schlegelberger B, Dietz CT, Schnittger S, Lotfi S, Gärtner M, Dang TA, Hofmann WK, Cross NC, Reiter A, Fabarius A (2015) Fusion of PDGFRB to MPRIP, CPSF6, and GOLGB1 in three patients with eosinophilia-associated myeloproliferative neoplasms. Genes Chromosomes Cancer 54:762–770

    Article  CAS  PubMed  Google Scholar 

  • Navarro Negredo P, Edgar JR, Manna PT, Antrobus R, Robinson MS (2018) The WDR11 complex facilitates the tethering of AP-1-derived vesicles. Nat Commun 9:596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogino K, Low SE, Yamada K, Saint-Amant L, Zhou W, Muto A, Asakawa K, Nakai J, Kawakami K, Kuwada JY, Hirata H (2015) RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels. Proc Natl Acad Sci USA 112:2859–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T, Ungar D, Hughson FM, Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15:2423–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakdel M, von Blume J (2018) Exploring new routes for secretory protein export from the trans-Golgi network. Mol Biol Cell 29:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos N, Lennartsson J, Heldin CH (2018) PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1. J Cell Biol 217:1701–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Lei Q, Jiang Z, Hu Z (2014) Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling. J Mol Histol 45:435–445

    Article  CAS  PubMed  Google Scholar 

  • Perez F, Pernet-Gallay K, Nizak C, Goodson HV, Kreis TE, Goud B (2002) CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol 156:61–642

    Article  CAS  Google Scholar 

  • Perry E, Tsruya R, Levitsky P, Pomp O, Taller M, Weisberg S, Parris W, Kulkarni S, Malovani H, Pawson T, Shpungin S, Nir U (2004) TMF/ARA160 is a BC-box-containing protein that mediates the degradation of Stat3. Oncogene 23:8908–8919

    Article  CAS  PubMed  Google Scholar 

  • Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW (2014) Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res 12:1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philips MR (2004) Sef: a MEK/ERK catcher on the Golgi. Mol Cell 15:168–169

    Article  CAS  PubMed  Google Scholar 

  • Pizzo P, Lissandron V, Pozzan T (2010) The trans-golgi compartment: a new distinct intracellular Ca store. Commun Integr Biol 3:462–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popławski P, Piekiełko-Witkowska A, Nauman A (2017) The significance of TRIP11 and T3 signalling pathway in renal cancer progression and survival of patients. Endokrynol Pol 68:631–641

    PubMed  Google Scholar 

  • Potelle S, Dulary E, Climer L, Duvet S, Morelle W, Vicogne D, Lebredonchel E, Houdou M, Spriet C, Krzewinski-Recchi MA, Peanne R, Klein A, de Bettignies G, Morsomme P, Matthijs G, Marquardt T, Lupashin V, Foulquier F (2017) Manganese-induced turnover of TMEM165. Biochem J 474:1481–1493

    Article  CAS  PubMed  Google Scholar 

  • Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM, Antonny B, Jackson CL (2011) α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R, Gettemans J, Barr FA (2004) YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J Cell Biol 164:1009–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao S, Guo W, Liao L, Wang L, Wang Z, Zhang R, Xu D, Zhang Y, Pan Y, Wang Z, Chen Y (2015) DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells. Biochem J 469:469–480

    Article  CAS  PubMed  Google Scholar 

  • Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, Pfeffer SR (2006) A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 17:4353–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejman Lipinski A, Heymann J, Meissner C, Karlas A, Brinkmann V, Meyer TF, Heuer D (2009) Rab6 and Rab11 regulate chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog 5:e1000615

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Cheng L, Rong Z, Li Z, Li Y, Li H, Wang Z, Chang Z (2006) hSef co-localizes and interacts with Ras in the inhibition of Ras/MAPK signaling pathway. Biochem Biophys Res Commun 347:988–993

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Cheng L, Rong Z, Li Z, Li Y, Zhang X, Xiong S, Hu J, Fu XY, Chang Z (2008) hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation. Cell Signal 20:518–533

    Article  CAS  PubMed  Google Scholar 

  • Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Article  PubMed  Google Scholar 

  • Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo R, Parashuraman S, D'Angelo G, Luini A (2017) GOLPH3 and oncogenesis: what is the molecular link? Tissue Cell 49:170–174

    Article  CAS  PubMed  Google Scholar 

  • Rong Z, Wang A, Li Z, Ren Y, Cheng L, Li Y, Wang Y, Ren F, Zhang X, Hu J, Chang Z (2009) IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res 19:208–215

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Roboti P, Mironov AA, Lowe M (2015) Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 26:537–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satoh A, Wang Y, Malsam J, Beard MB, Warren G (2003) Golgin-84 is a rab1 binding partner involved in Golgi structure. Traffic 4:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG (2015) The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6:3493–3506

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin JJH, Gillingham AK, Begum F, Chadwick J, Munro S (2017) TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi. Nat Cell Biol 19:1424–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohda M, Misumi Y, Yamamoto A, Nakamura N, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2010) Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport. Traffic 11:1552–1566

    Article  CAS  PubMed  Google Scholar 

  • Sohda M, Misumi Y, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2015) Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem Biophys Res Commun 456:275–281

    Article  CAS  PubMed  Google Scholar 

  • Sorice M, Matarrese P, Manganelli V, Tinari A, Giammarioli AM, Mattei V, Misasi R, Garofalo T, Malorni W (2010) Role of GD3-CLIPR-59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. PLoS One 5:e8567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6:R82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sui J, Li X, Xing J, Cao F, Wang H, Gong H, Zhang W (2015) Lentivirus-mediated silencing of USO1 inhibits cell proliferation and migration of human colon cancer cells. Med Oncol 32:218

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, Nikolaidis IM, Liu X, Zhao Y, Xue Y, Burns AR, Roybal J, Gibbons DL, Zal T, Creighton CJ, Ungar D, Wang Y, Kurie JM (2017) Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest 127:117–131

    Article  PubMed  Google Scholar 

  • Taneja TK, Ma D, Kim BY, Welling PA (2018) Golgin-97 targets ectopically expressed inward rectifying potassium channel, Kir2.1, to the trans-Golgi network in COS-7 cells. Front Physiol 9:1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang SL, Gao YL, Hu WZ (2017) PAQR3 inhibits the proliferation, migration and invasion in human glioma cells. Biomed Pharmacother 92:24–32

    Article  CAS  PubMed  Google Scholar 

  • Tompkins N, MacKenzie B, Ward C, Salgado D, Leidal A, McCormick C, Pohajdak B (2014a) Cytohesin-associated scaffolding protein (CASP) is involved in migration and IFN-γ secretion in natural killer cells. Biochem Biophys Res Commun 451:165–170

    Article  CAS  PubMed  Google Scholar 

  • Tompkins N, MacNeil AJ, Pohajdak B (2014b) Cytohesin-associated scaffolding protein (CASP) is a substrate for granzyme B and ubiquitination. Biochem Biophys Res Commun 452:473–478

    Article  CAS  PubMed  Google Scholar 

  • Troadec E, Dobbelstein S, Bertrand P, Faumont N, Trimoreau F, Touati M, Chauzeix J, Petit B, Bordessoule D, Feuillard J, Bastard C, Gachard N (2017) A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia 31:514–517

    Article  CAS  PubMed  Google Scholar 

  • Vanegas S, Sua LF, López-Tenorio J, Ramírez-Montaño D, Pachajoa H (2018) Achondrogenesis type 1A: clinical, histologic, molecular, and prenatal ultrasound diagnosis. Appl Clin Genet 11:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Seemann J, Pypaert M, Shorter J, Warren G (2003) A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J 22:3279–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li X, Fan F, Jiao S, Wang L, Zhu L, Pan Y, Wu G, Ling ZQ, Fang J, Chen Y (2012) PAQR3 plays a suppressive role in the tumorigenesis of colorectal cancers. Carcinogenesis 33:2228–2235

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang L, Zhu L, Pan Y, Xiao F, Liu W, Wang Z, Guo F, Liu Y, Thomas WG, Chen Y (2013) PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus. Diabetes 62:444–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Wei W, Wang WQ, Zhao XY, Guo H, Fang DC (2014) RING finger proteins are involved in the progression of Barrett esophagus to esophageal adenocarcinoma: a preliminary study. Gut Liver 8:487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JH, Seemann J (2009) Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 20:810–816

    Article  CAS  PubMed  Google Scholar 

  • Wei JH, Seemann J (2017) Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 47:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JH, Zhang ZC, Wynn RM, Seemann J (2015) GM130 regulates Golgi-derived spindle assembly by activating TPX2 and capturing microtubules. Cell 162:287–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkos TM, Lowe M (2016) The Golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong M, Gillingham AK, Munro S (2017) The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol 15:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Lu L, Hong W, Song H (2004) Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11:86–94

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhuang K, Li H (2016) PAQR3 plays a suppressive role in laryngeal squamous cell carcinoma. Tumour Biol 37:561–565

    Article  CAS  PubMed  Google Scholar 

  • Wu MH, Luo JD, Wang WC, Chang TH, Hwang WL, Lee KH, Liu SY, Yang JW, Chiou CT, Chang CH, Chiang WF (2018) Risk analysis of malignant potential of oral verrucous hyperplasia: a follow-up study of 269 patients and copy number variation analysis. Head Neck 40:1046–1056

    Article  PubMed  Google Scholar 

  • Xiang P, Sun Y, Liu Y, Shu Q, Zhu Y (2018) Really interesting new gene finger protein 121 is a tumor suppressor of renal cell carcinoma. Gene 676:322–328

    Article  CAS  PubMed  Google Scholar 

  • Xiu Y, Liu Z, Xia S, Jin C, Yin H, Zhao W, Wu Q (2014) MicroRNA-137 upregulation increases bladder cancer cell proliferation and invasion by targeting PAQR3. PLoS One 9:e109734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Deng N, Wang X, Chen Y, Li G, Fan H (2017) RKTG overexpression inhibits proliferation and induces apoptosis of human leukemia cells via suppression of the ERK and PI3K/AKT signaling pathways. Oncol Lett 14:965–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S, Tsukita S (2007) Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res 313:3472–3485

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Kovalenko D, Nadeau RJ, Harkins LK, Mitchell J, Zubanova O, Chen PY, Friesel R (2004) Sef interacts with TAK1 and mediates JNK activation and apoptosis. J Biol Chem 279:38099–38102

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhou L, Cheng Y, Sun L, Fan J, Liang J, Guo M, Liu N, Zhu L (2014) MicroRNA-543 acts as an oncogene by targeting PAQR3 in hepatocellular carcinoma. Am J Cancer Res 4:897–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Signorile L, Basu S, Ottema S, Lebbink JHG, Leslie K, Smal I, Dekkers D, Demmers J, Galjart N (2016) Isolation of functional tubulin dimers and of tubulin-associated proteins from mammalian cells. Curr Biol 26:1728–1736

    Article  CAS  PubMed  Google Scholar 

  • Zemirli N, Pourcelot M, Dogan N, Vazquez A, Arnoult D (2014) The E3 ubiquitin ligase RNF121 is a positive regulator of NF-κB activation. Cell Commun Signal 12:72

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang Y (2016) GRASPs in Golgi structure and function. Front Cell Dev Biol 3:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jiang X, Qin X, Ye D, Yi Z, Liu M, Bai O, Liu W, Xie X, Wang Z, Fang J, Chen Y (2010) RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma. Oncogene 29:5404–5415

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao X, Yan L, Li M (2011) Similar expression to FGF (Sef) reduces endometrial adenocarcinoma cells proliferation via inhibiting fibroblast growth factor 2-mediated MAPK/ERK signaling pathway. Gynecol Oncol 122:669–674

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hu W, Wang L, Han B, Lin R, Wei N (2017) Association of GOLPH2 expression with survival in non-small-cell lung cancer: clinical implications and biological validation. Biomark Med 11:967–977

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hongdu B, Ma D, Chen Y (2014) Really interesting new gene finger protein 121 is a novel Golgi-localized membrane protein that regulates apoptosis. Acta Biochim Biophys Sin Shanghai 46:668–674

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yang C, Guo S, Wu Y (2015) GM130 regulates epithelial-to-mesenchymal transition and invasion of gastric cancer cells via snail. Int J Clin Exp Pathol 8:10784–10791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Li Y, Chen G, Wang F, Shen Z, Zhou R (2017) Overexpression of miR-15b-5p promotes gastric cancer metastasis by regulating PAQR3. Oncol Rep 38:352–358

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Sun X, Zou Z, Sun L, Zhang T, Guo S, Wen Y, Liu L, Wang Y, Qin J, Li L, Gong W, Bao S (2010) PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res 20:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Wang S, Wang J (2017) PAQR3 inhibits the proliferation and tumorigenesis in esophageal Cancer cells. Oncol Res 25:663–671

    Article  PubMed  PubMed Central  Google Scholar 

  • Zisman-Rozen S, Fink D, Ben-Izhak O, Fuchs Y, Brodski A, Kraus MH, Bejar J, Ron D (2007) Downregulation of Sef, an inhibitor of receptor tyrosine kinase signaling, is common to a variety of human carcinomas. Oncogene 26:6093–6098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Marzena Podhorska-Okołów and Dr. Katarzyna Haczkiewicz (Department of Human Morphology and Embryology, Wroclaw Medical University) for preparing the electron microphotographs and Ms. Agnieszka Janczak for her editorial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

A statutory subsidy by the Polish Ministry of Science and Higher Education as part of grant ST.B130.18.030 (record numbers in the Simple system).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donizy, P., Marczuk, J. (2019). Selected Golgi-Localized Proteins and Carcinogenesis: What Do We Know?. In: Kloc, M. (eds) The Golgi Apparatus and Centriole. Results and Problems in Cell Differentiation, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_20

Download citation

Publish with us

Policies and ethics