Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AKAP450:
-
A-kinase-anchoring protein 450
- cdc25C:
-
Cell division cycle 25C
- CDK:
-
Cyclin-dependent kinase
- CDK5RAP2:
-
CDK5 regulatory Subunit-associated protein 2
- CENP-E:
-
CENtrosome-associated Protein E
- Cep:
-
Centrosomal protein
- CLIP-70:
-
Cytoplasmic LInker Protein 170
- C-NAP1:
-
Centrosomal Nek2-associated Protein 1
- CP110:
-
Centriolar coiled-coil Protein of 110 kDa
- CPAP:
-
Centrosomal P4.1-associated Protein
- EGFR:
-
Epidermal growth factor receptor
- FBF1:
-
Fas-binding factor 1
- GCP:
-
γ-tubulin complex protein
- hPOC5:
-
human Proteome of Centriole 5
- INCENP:
-
Inner CENtromere Protein
- LRRC45:
-
Leucine-rich repeat containing 45
- NEDD1:
-
Neural precursor cell expressed developmentally down-regulated protein 1
- ODF2:
-
Outer dense fiber protein 2
- SAS-6:
-
Spindle assembly abnormal protein 6
- SCLT1:
-
Sodium channel and clathrin linker 1
- SMC3:
-
Structural maintenance of chromosomes protein 3
- STIL:
-
SCL interrupting locus protein
- TACC2:
-
Transforming acidic coiled-coil-containing protein 2
- TRF1:
-
Telomeric repeat-binding factor 1
References
Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3:51–62
Arnaud L, Pines J, Nigg EA (1998) GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107:424–429
Arquint C, Nigg EA (2014) STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification. Curr Biol 24:351–360. https://doi.org/10.1016/j.cub.2013.12.016
Arquint C, Gabryjonczyk AM, Nigg EA (2014) Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 369 (1650). pii: 20130464. https://doi.org/10.1098/rstb.2013.0464
Aydogan MG et al (2018) A homeostatic clock sets daughter centriole size in flies. J Cell Biol 217:1233–1248. https://doi.org/10.1083/jcb.201801014
Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E, Khodjakov A, Bornens M (2009) hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185:101–114. https://doi.org/10.1083/jcb.200808082
Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171:27–33. https://doi.org/10.1083/jcb.200504107
Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell Rep 133:11
Berdnik D, Knoblich JA (2002) Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol 12:640–647
Bertolin G et al (2018) Aurora kinase A localises to mitochondria to control organelle dynamics and energy production. Elife 7. https://doi.org/10.7554/eLife.38111
Bettencourt-Dias M et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15:9
Bury L et al (2017) Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J Cell Biol 216:3571–3590. https://doi.org/10.1083/jcb.201606077
Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18:1209–1214. https://doi.org/10.1016/j.cub.2008.07.029
Chestukhin A, Pfeffer C, Milligan S, DeCaprio JA, Pellman D (2003) Processing, localization, and requirement of human separase for normal anaphase progression. Proc Natl Acad Sci USA 100:4574–4579. https://doi.org/10.1073/pnas.0730733100
Coelho PA et al (2015) Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5:150209. https://doi.org/10.1098/rsob.150209
Cole DG, Saxton WM, Sheehan KB, Scholey JM (1994) A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos. J Biol Chem 269:22913–22916
Cosenza MR et al (2017) Asymmetric centriole numbers at spindle poles cause chromosome missegregation in cancer. Cell Rep 20:1906–1920. https://doi.org/10.1016/j.celrep.2017.08.005
Cowley DO et al (2009) Aurora-A kinase is essential for bipolar spindle formation and early development. Mol Cell Biol 29:1059–1071. https://doi.org/10.1128/mcb.01062-08
Cucco F et al (2018) Separase prevents genomic instability by controlling replication fork speed. Nucleic Acids Res 46:267–278. https://doi.org/10.1093/nar/gkx1172
Dawei H, Honggang D, Qian W (2018) AURKA contributes to the progression of oral squamous cell carcinoma (OSCC) through modulating epithelial-to-mesenchymal transition (EMT) and apoptosis via the regulation of ROS. Biochem Biophys Res Commun 507:83–90. https://doi.org/10.1016/j.bbrc.2018.10.170
de Carcer G et al (2018) Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun 9:3012. https://doi.org/10.1038/s41467-018-05429-5
Dictenberg JB et al (1998) Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141:163–174
Du J, Hannon GJ (2004) Suppression of p160ROCK bypasses cell cycle arrest after Aurora-A/STK15 depletion. Proc Natl Acad Sci USA 101:8975–8980. https://doi.org/10.1073/pnas.0308484101
Dzafic E, Strzyz PJ, Wilsch-Brauninger M, Norden C (2015) Centriole amplification in zebrafish affects proliferation and survival but not differentiation of neural progenitor cells. Cell Rep 13:168–182. https://doi.org/10.1016/j.celrep.2015.08.062
Dzhindzhev NS, Tzolovsky G, Lipinszki Z, Abdelaziz M, Debski J, Dadlez M, Glover DM (2017) Two-step phosphorylation of Ana2 by Plk4 is required for the sequential loading of Ana2 and Sas6 to initiate procentriole formation. Open Biol 7(12). pii: 170247. https://doi.org/10.1098/rsob.170247
Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL (2011) Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol 21:428–432. https://doi.org/10.1016/j.cub.2011.01.072
Elowe S, Hummer S, Uldschmid A, Li X, Nigg EA (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:2205–2219. https://doi.org/10.1101/gad.436007
Engle KM, Mei T-S; Wasa M, Yu J-Q (2008) Anomalous centriole configurations are detected in Drosophila wing disc cells upon Cdk1 inactivation Acc Chem Res 45:5
Fang Y, Zhang X (2016) Targeting NEK2 as a promising therapeutic approach for cancer treatment. Cell Cycle 15:895–907. https://doi.org/10.1080/15384101.2016.1152430
Faragher AJ, Fry AM (2003) Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 14:2876–2889. https://doi.org/10.1091/mbc.e03-02-0108
Feng YB et al (2009) Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int J Cancer 124:578–588. https://doi.org/10.1002/ijc.23990
Fode C, Motro B, Yousefi S, Heffernan M, Dennis JW (1994) Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc Natl Acad Sci USA 91:6388–6392
Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998a) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574
Fry AM, Meraldi P, Nigg EA (1998b) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17:470–481. https://doi.org/10.1093/emboj/17.2.470
Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10. https://doi.org/10.1158/1541-7786.mcr-06-0208
Fu J, Hagan IM, Glover DM (2015) The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 7:a015800. https://doi.org/10.1101/cshperspect.a015800
Fu J et al (2016) Conserved molecular interactions in centriole-to-centrosome conversion. Nat Cell Biol 18:87–99. https://doi.org/10.1038/ncb3274
Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:5
Ganier O, Schnerch D, Oertle P, Lim RY, Plodinec M, Nigg EA (2018) Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 37. https://doi.org/10.15252/embj.201798576
Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW (2000) The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci USA 97:14352–14357. https://doi.org/10.1073/pnas.97.26.14352
Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156:437–451. https://doi.org/10.1083/jcb.200108135
Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369. pii: 20130467. https://doi.org/10.1098/rstb.2013.0467
Godinho SA et al (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:18
Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR (2002) Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62:4115–4122
Golsteyn RM, Mundt KE, Fry AM, Nigg EA (1995) Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 129:1617–1628
Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, Sharp DJ (2007) Human Cep192 is required for mitotic centrosome and spindle assembly. Curr Biol 17:1960–1966. https://doi.org/10.1016/j.cub.2007.10.019
Gonczy P (2012) Towards a molecular architecture of centriole assembly. Nat Rev Mol Cell Biol 13:425–435. https://doi.org/10.1038/nrm3373
Gonczy P, Pichler S, Kirkham M, Hyman AA (1999) Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147:135–150
Goto H et al (2006) Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nat Cell Biol 8:180–187. https://doi.org/10.1038/ncb1350
Gottardo M, Callaini G, Riparbelli MG (2014) Procentriole assembly without centriole disengagement—a paradox of male gametogenesis. J Cell Sci 127:3434–3439. https://doi.org/10.1242/jcs.152843
Gouveia SM et al (2018) PLK4 is a microtubule-associated protein that self assembles promoting de novo MTOC formation. J Cell Sci. https://doi.org/10.1242/jcs.219501
Guichard P et al (2017) Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat Commun 8:14813. https://doi.org/10.1038/ncomms14813
Gurvits N, Loyttyniemi E, Nykanen M, Kuopio T, Kronqvist P, Talvinen K (2017) Separase is a marker for prognosis and mitotic activity in breast cancer. Br J Cancer 117:1383–1391. https://doi.org/10.1038/bjc.2017.301
Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146. https://doi.org/10.1038/ncb1320
Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155:1109–1116. https://doi.org/10.1083/jcb.200108051
Haren L, Stearns T, Luders J (2009) Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS One 4:e5976. https://doi.org/10.1371/journal.pone.0005976
Harris PS et al (2012) Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells. BMC Cancer 12:80. https://doi.org/10.1186/1471-2407-12-80
Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T (2010) Cep152 interacts with Plk4 and is required for centriole duplication. J Cell Biol 191:721–729. https://doi.org/10.1083/jcb.201006049
Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM (2004) The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 64:7370–7376. https://doi.org/10.1158/0008-5472.can-04-0960
Hayward DG et al (2010) Identification by high-throughput screening of viridin analogs as biochemical and cell-based inhibitors of the cell cycle-regulated nek2 kinase. J Biomol Screen 15:918–927. https://doi.org/10.1177/1087057110376537
He R, Huang N, Bao Y, Zhou H, Teng J, Chen J (2013) LRRC45 is a centrosome linker component required for centrosome cohesion. Cell Rep 4:1100–1107. https://doi.org/10.1016/j.celrep.2013.08.005
Hellmuth S, Gutierrez-Caballero C, Llano E, Pendas AM, Stemmann O (2018) Local activation of mammalian separase in interphase promotes double-strand break repair and prevents oncogenic transformation. EMBO J 37. pii: e99184. https://doi.org/10.15252/embj.201899184
Hirota T et al (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114:585–598
Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC, Dennis JW (2001) Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol 11:441–446
Ishikawa H, Kubo A, Tsukita S, Tsukita S (2005) Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 7:517–524. https://doi.org/10.1038/ncb1251
Izquierdo D, Wang WJ, Uryu K, Tsou MF (2014) Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep 8:957–965. https://doi.org/10.1016/j.celrep.2014.07.022
Jana SC, Marteil G, Bettencourt-Dias M (2014) Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr Opin Cell Biol 26:96–106. https://doi.org/10.1016/j.ceb.2013.12.001
Jeong SB et al (2018) Essential role of polo-like kinase 1 (Plk1) oncogene in tumor growth and metastasis of tamoxifen-resistant breast cancer. Mol Cancer Ther 17:825–837. https://doi.org/10.1158/1535-7163.mct-17-0545
Jimeno A, Rubio-Viqueira B, Rajeshkumar NV, Chan A, Solomon A, Hidalgo M (2010) A fine-needle aspirate-based vulnerability assay identifies polo-like kinase 1 as a mediator of gemcitabine resistance in pancreatic cancer. Mol Cancer Ther 9:311–318. https://doi.org/10.1158/1535-7163.mct-09-0693
Joukov V, Walter JC, De Nicolo A (2014) The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol Cell 55:578–591. https://doi.org/10.1016/j.molcel.2014.06.016
Kawakami M et al (2018) Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers. Proc Natl Acad Sci USA 115:1913–1918. https://doi.org/10.1073/pnas.1719760115
Kazazian K et al (2017) Plk4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton. Cancer Res 77:434–447. https://doi.org/10.1158/0008-5472.can-16-2060
Keryer G, Witczak O, Delouvée A, Kemmner WA, Rouillard D, Tasken K, Bornens M (2003) Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 14:2436–2446. https://doi.org/10.1091/mbc.e02-09-0614
Kim K, Lee S, Chang J, Rhee K (2008) A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization. Exp Cell Res 314:3692–3700. https://doi.org/10.1016/j.yexcr.2008.09.016
Kim TS et al (2013) Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc Natl Acad Sci USA 110:E4849–E4857. https://doi.org/10.1073/pnas.1319656110
Kimura M, Kotani S, Hattori T, Sumi N, Yoshioka T, Todokoro K, Okano Y (1997) Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J Biol Chem 272:13766–13771
Kishi K, van Vugt MA, Okamoto K, Hayashi Y, Yaffe MB (2009) Functional dynamics of Polo-like kinase 1 at the centrosome. Mol Cell Biol 29:3134–3150. https://doi.org/10.1128/mcb.01663-08
Kitagawa D et al (2011) Structural basis of the 9-fold symmetry of centrioles. Cell 144:364–375. https://doi.org/10.1016/j.cell.2011.01.008
Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202. https://doi.org/10.1016/j.devcel.2007.07.002
Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW, Swallow CJ (2005) Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 37:883–888. https://doi.org/10.1038/ng1605
Kollareddy M, Dzubak P, Zheleva D, Hajduch M (2008) Aurora kinases: structure, functions and their association with cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152:27–33
Kong D, Farmer V, Shukla A, James J, Gruskin R, Kiriyama S, Loncarek J (2014) Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J Cell Biol 206:855–865. https://doi.org/10.1083/jcb.201407087
Konotop G et al (2016) Pharmacological inhibition of centrosome clustering by slingshot-mediated cofilin activation and actin cortex destabilization. Cancer Res 76:6690–6700. https://doi.org/10.1158/0008-5472.can-16-1144
Korzeniewski N, Hohenfellner M, Duensing S (2012) CAND1 promotes PLK4-mediated centriole overduplication and is frequently disrupted in prostate cancer. Neoplasia (New York, NY) 14:799–806
Kovacs L et al (2018) Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nat Genet 50:1021–1031. https://doi.org/10.1038/s41588-018-0149-1
Kumada K et al (2006) The selective continued linkage of centromeres from mitosis to interphase in the absence of mammalian separase. J Cell Biol 172:835–846. https://doi.org/10.1083/jcb.200511126
Kuriyama R, Bettencourt-Dias M, Hoffmann I, Arnold M, Sandvig L (2009) Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells. J Cell Sci 122:2014–2023. https://doi.org/10.1242/jcs.036715
Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203. https://doi.org/10.1101/gad.1700908
Leber B et al (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2:33ra38. https://doi.org/10.1126/scitranslmed.3000915
Leda M, Holland AJ, Goryachev AB (2018) Autoamplification and competition drive symmetry breaking: initiation of centriole duplication by the PLK4-STIL network. iScience 8:222–235. https://doi.org/10.1016/j.isci.2018.10.003
Lee J, Gollahon L (2013) Mitotic perturbations induced by Nek2 overexpression require interaction with TRF1 in breast cancer cells. Cell Cycle 12:3599–3614. https://doi.org/10.4161/cc.26589
Levine MS et al (2017) Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 40:313–322.e315. https://doi.org/10.1016/j.devcel.2016.12.022
Li Z, Dai K, Wang C, Song Y, Gu F, Liu F, Fu L (2016) Expression of polo-like kinase 4(PLK4) in breast cancer and its response to taxane-based neoadjuvant chemotherapy. J Cancer 7:1125–1132. https://doi.org/10.7150/jca.14307
Li Z et al (2017) Polo-like kinase 1 (Plk1) overexpression enhances ionizing radiation-induced cancer formation in mice. J Biol Chem 292:17461–17472. https://doi.org/10.1074/jbc.M117.810960
Li S, Wang C, Wang W, Liu W, Zhang G (2018) Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia. Medicine 97:e10734. https://doi.org/10.1097/md.0000000000010734
Lin YC et al (2013) Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J 32:1141–1154. https://doi.org/10.1038/emboj.2013.56
Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951. https://doi.org/10.1016/s0002-9440(10)65513-7
Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95:2950–2955
Liu L, Zhang CZ, Cai M, Fu J, Chen GG, Yun J (2012) Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS One 7:e41293. https://doi.org/10.1371/journal.pone.0041293
Liu Z, Sun Q, Wang X (2017) PLK1, a potential target for cancer therapy. Transl Oncol 10:22–32. https://doi.org/10.1016/j.tranon.2016.10.003
Liu Y et al (2018) Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nat Commun 9:15
Llamazares S et al (1991) Polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev 5:2153–2165
Lu LY, Wood JL, Minter-Dykhouse K, Ye L, Saunders TL, Yu X, Chen J (2008) Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol Cell Biol 28:6870–6876. https://doi.org/10.1128/mcb.00392-08
Luders J (2012) The amorphous pericentriolar cloud takes shape. Nat Cell Biol 14:1126–1128. https://doi.org/10.1038/ncb2617
Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60–65. https://doi.org/10.1016/j.gde.2006.12.008
Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15:731–740. https://doi.org/10.1038/ncb2746
Martin CA et al (2014) Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet 46:1283–1292. https://doi.org/10.1038/ng.3122
Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278:51786–51795. https://doi.org/10.1074/jbc.M306275200
Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M (2012) Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr Biol 22:915–921. https://doi.org/10.1016/j.cub.2012.03.048
Meng L et al (2014) Inhibition of Nek2 by small molecules affects proteasome activity. BioMed Res Int 2014:13. https://doi.org/10.1155/2014/273180
Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 21:483–492
Meyer R, Fofanov V, Panigrahi A, Merchant F, Zhang N, Pati D (2009) Overexpression and mislocalization of the chromosomal segregation protein separase in multiple human cancers. Clin Cancer Res 15:2703–2710. https://doi.org/10.1158/1078-0432.ccr-08-2454
Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113(Pt 17):3013–3023
Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324
Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ (2015) Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 209:863–878. https://doi.org/10.1083/jcb.201502088
Mukherjee M et al (2011) Separase loss of function cooperates with the loss of p53 in the initiation and progression of T- and B-cell lymphoma, leukemia and aneuploidy in mice. PLoS One 6:e22167. https://doi.org/10.1371/journal.pone.0022167
Mukhopadhyay A et al (2016) 14-3-3gamma prevents centrosome amplification and neoplastic progression. Sci Rep 6:26580. https://doi.org/10.1038/srep26580
Nakamura A, Arai H, Fujita N (2009) Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J Cell Biol 187:607–614. https://doi.org/10.1083/jcb.200906019
Nakazawa Y, Hiraki M, Kamiya R, Hirono M (2007) SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol 17:2169–2174. https://doi.org/10.1016/j.cub.2007.11.046
Navarro-Serer B, Childers EP, Hermance NM, Mercadante D, Manning AL (2019) Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes. Oncotarget 10(17):1649–1659
Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2:21–32. https://doi.org/10.1038/35048096
Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119:2717–2723. https://doi.org/10.1002/ijc.22245
Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. https://doi.org/10.1038/ncb2345
O’Connor A, Maffini S, Rainey MD, Kaczmarczyk A, Gaboriau D, Musacchio A, Santocanale C (2015) Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint. Biol Open 5:11–19. https://doi.org/10.1242/bio.014969
Ohta M, Watanabe K, Ashikawa T, Nozaki Y, Yoshiba S, Kimura A, Kitagawa D (2018) Bimodal binding of STIL to Plk4 controls proper centriole copy number. Cell Rep 23:3160–3169.e3164. https://doi.org/10.1016/j.celrep.2018.05.030
Okuda M et al (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140
Pagan JK et al (2015) Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat Cell Biol 17:31–43. https://doi.org/10.1038/ncb3076
Peter M, Nakagawa J, Doree M, Labbe JC, Nigg EA (1990) Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60:791–801
Pezuk JA, Brassesco MS, de Oliveira RS, Machado HR, Neder L, Scrideli CA, Tone LG (2017) PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis. Childs Nerv Syst 33:609–615. https://doi.org/10.1007/s00381-017-3366-5
Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149:317–330
Pitner H, Kathryn M, Saavedra HI (2013) Cdk4 and Nek2 signal binucleation and centrosome amplification in a Her2+ breast cancer model. PLoS One 8:4
Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307:3
Ramani P, Nash R, Sowa-Avugrah E, Rogers C (2015) High levels of polo-like kinase 1 and phosphorylated translationally controlled tumor protein indicate poor prognosis in neuroblastomas. J Neurooncol 125:103–111. https://doi.org/10.1007/s11060-015-1900-4
Rebacz B, Larsen TO, Clausen MH, Ronnest MH, Loffler H, Ho AD, Kramer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350. https://doi.org/10.1158/0008-5472.can-07-0663
Reber S, Hyman AA (2015) Emergent properties of the metaphase spindle. Cold Spring Harb Perspect Biol 7:a015784. https://doi.org/10.1101/cshperspect.a015784
Reina J, Gonzalez C (2014) When fate follows age: unequal centrosomes in asymmetric cell division. Philos Trans R Soc Lond B Biol Sci 369. https://doi.org/10.1098/rstb.2013.0466
Rhys AD et al (2018) Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells. J Cell Biol 217:195–209. https://doi.org/10.1083/jcb.201704102
Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94:549–556
Rios RM (2014) The centrosome-Golgi apparatus nexus. Philos Trans R Soc Lond B Biol Sci 369. https://doi.org/10.1098/rstb.2013.0462
Rodel F et al (2010) Polo-like kinase 1 as predictive marker and therapeutic target for radiotherapy in rectal cancer. Am J Pathol 177:918–929. https://doi.org/10.2353/ajpath.2010.100040
Rodrigues-Martins A, Riparbelli M, Callaini G, Glover DM, Bettencourt-Dias M (2007) Revisiting the role of the mother centriole in centriole biogenesis. Science 316:1046–1050. https://doi.org/10.1126/science.1142950
Rosario CO et al (2010) Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc Natl Acad Sci USA 107:6888–6893. https://doi.org/10.1073/pnas.0910941107
Rosario CO et al (2015) A novel role for Plk4 in regulating cell spreading and motility. Oncogene 34:3441–3451. https://doi.org/10.1038/onc.2014.275
Ruppenthal S, Kleiner H, Nolte F, Fabarius A, Hofmann WK, Nowak D, Seifarth W (2018) Increased separase activity and occurrence of centrosome aberrations concur with transformation of MDS. PLoS One 13:e0191734. https://doi.org/10.1371/journal.pone.0191734
Sardon T, Pache RA, Stein A, Molina H, Vernos I, Aloy P (2010) Uncovering new substrates for Aurora A kinase. EMBO Rep 11:977–984. https://doi.org/10.1038/embor.2010.171
Sawin KE, LeGuellec K, Philippe M, Mitchison TJ (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–543. https://doi.org/10.1038/359540a0
Schnerch D, Nigg EA (2016) Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 35:2711–2722. https://doi.org/10.1038/onc.2015.332
Schultz SJ, Fry AM, Sutterlin C, Ried T, Nigg EA (1994) Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ 5:625–635
Sercin O et al (2016) Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18:100–110. https://doi.org/10.1038/ncb3270
Shah KN et al (2019) Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med 25:111–118. https://doi.org/10.1038/s41591-018-0264-7
Shepard JL et al (2007) A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. Genes Dev 21:55–59. https://doi.org/10.1101/gad.1470407
Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K (2005) Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett 579:6621–6634. https://doi.org/10.1016/j.febslet.2005.10.057
Shinmura K, Kurabe N, Goto M, Yamada H, Natsume H, Konno H, Sugimura H (2014) PLK4 overexpression and its effect on centrosome regulation and chromosome stability in human gastric cancer. Mol Biol Rep 41:6635–6644. https://doi.org/10.1007/s11033-014-3546-2
Shukla A, Kong D, Sharma M, Magidson V, Loncarek J (2015) Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat Commun 6:8077. https://doi.org/10.1038/ncomms9077
Simizu S, Osada H (2000) Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol 2:852–854. https://doi.org/10.1038/35041102
Smith L, Farzan R, Ali S, Buluwela L, Saurin AT, Meek DW (2017) The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation. Sci Rep 7:16115. https://doi.org/10.1038/s41598-017-16394-2
Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976. https://doi.org/10.1242/bio.20122337
Stevens NR, Roque H, Raff JW (2010) DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement. Dev Cell 19:913–919. https://doi.org/10.1016/j.devcel.2010.11.010
Stinchcombe JC, Griffiths GM (2014) Communication, the centrosome and the immunological synapse. Philos Trans R Soc Lond B Biol Sci 369. https://doi.org/10.1098/rstb.2013.0463
Suzuki K, Kokuryo T, Senga T, Yokoyama Y, Nagino M, Hamaguchi M (2010) Novel combination treatment for colorectal cancer using Nek2 siRNA and cisplatin. Cancer Sci 101:1163–1169. https://doi.org/10.1111/j.1349-7006.2010.01504.x
Swallow CJ, Ko MA, Siddiqui NU, Hudson JW, Dennis JW (2005) Sak/Plk4 and mitotic fidelity. Oncogene 24:306–312. https://doi.org/10.1038/sj.onc.1208275
Takao D, Yamamoto S, Kitagawa D (2018) A theory of centriole duplication based on self-organized spatial pattern formation. bioRxiv 424754. https://doi.org/10.1101/424754
Tanenbaum ME, Macurek L, Galjart N, Medema RH (2008) Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J 27:3235–3245. https://doi.org/10.1038/emboj.2008.242
Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK (2009) CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 11:825–831. https://doi.org/10.1038/ncb1889
Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–168. https://doi.org/10.1101/gad.207043.112
Tian X et al (2018) Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 9:54. https://doi.org/10.1038/s41419-017-0088-2
Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K (2001) Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276:21529–21537. https://doi.org/10.1074/jbc.M100014200
Toyoshima-Morimoto F, Taniguchi E, Nishida E (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3:341–348. https://doi.org/10.1093/embo-reports/kvf069
Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951. https://doi.org/10.1038/nature04985
Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17:344–354. https://doi.org/10.1016/j.devcel.2009.07.015
Uhlmann F, Lottspelch F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42. https://doi.org/10.1038/21831
Vitre B et al (2015) Chronic centrosome amplification without tumorigenesis. Proc Natl Acad Sci USA 112:11
Vlijm R et al (2018) STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proc Natl Acad Sci USA 115:8
Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158. https://doi.org/10.1016/s0074-7696(07)65003-7
Wang WJ, Soni RK, Uryu K, Tsou MF (2011) The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J Cell Biol 193:727–739. https://doi.org/10.1083/jcb.201101109
Wang-Bishop L et al (2018) Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. Gastroenterology. https://doi.org/10.1053/j.gastro.2018.10.030
Winey M, O’Toole E (2014) Centriole structure. Philos Trans R Soc Lond B Biol Sci 369. https://doi.org/10.1098/rstb.2013.0457
Woodruff JB, Wueseke O, Hyman AA (2014) Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 369. https://doi.org/10.1098/rstb.2013.0459
Yamamoto S, Kitagawa D (2018) Self-organization of Plk4 regulates symmetry breaking in centriole duplication. bioRxiv 313635. https://doi.org/10.1101/313635
Zhang D et al (2004a) Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 23:8720–8730. https://doi.org/10.1038/sj.onc.1208153
Zhang H, Shi X, Paddon H, Hampong M, Dai W, Pelech S (2004b) B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 279:35726–35734. https://doi.org/10.1074/jbc.M403264200
Zhang N et al (2008) Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA 105:13033–13038. https://doi.org/10.1073/pnas.0801610105
Zhang X et al (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 122:2240–2251. https://doi.org/10.1242/jcs.042747
Zhou W et al (2013) NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 23:48–62. https://doi.org/10.1016/j.ccr.2012.12.001
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bose, A., Dalal, S.N. (2019). Centrosome Amplification and Tumorigenesis: Cause or Effect?. In: Kloc, M. (eds) The Golgi Apparatus and Centriole. Results and Problems in Cell Differentiation, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-23173-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23172-9
Online ISBN: 978-3-030-23173-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)