Skip to main content

Microbial Applications for Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Innovations in Sustainable Agriculture
  • 1291 Accesses

Abstract

Agriculture in the current era is highly dependent on chemical fertilizers, pesticides and weedicides. Excessive applications of these chemicals on crop plants has increased the production cost, jeopardized the environment and has depleted the non-renewable resources. Potential threats to non-renewable resources and soil, water, air environments have led to seek alternative approaches for sustainable crop production and clean environment. To lessen these adversaries, not only scientific community, but industry and farmers are also continuously involved in research, development and adoption of new sustainable technologies. The tiny organisms in rhizosphere have shown their potential to play ubiquitous role in sustainable agricultural development and have been in continuous use since over the last century. In this chapter, different aspects of microbial applications for sustainable agriculture are elaborated. Applications of bacteria-containing biofertilizers, their types and benefits to crops have been discussed. Reports on plant growth promotion through phytohormones, siderophores and enzymes production by rhizobacteria are also detailed. Moreover, sustainable control of plant diseases through biocontrol and amelioration of abiotic stresses including; drought, salinity, climate change and heavy metals by using rhizobacteria are also encompassed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah TM, Ali YN, Suleman P (2008) Biological control of Sclerotinia sclerotiorum with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot 27:1354–1359

    Article  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012a) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate- deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus spp: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Aus Plant Pathol 38:44–50

    Article  Google Scholar 

  • Andronov EE, Petrova SN, Pinaev AG, Pershina EV, Rakhimgalieva SZ, Akhmedenov KM, Sergaliev NK (2012) Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques. Eurasian Soilless Sci 45:147–156

    Article  CAS  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and nonmycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asad SA, Rehman M, Ahmad R, Umer M (2018) Differential uptake of cadmium and chromium in Brassica oleraceae in response to application of plant growth promoting rhizobacteria. Int J Agric Biol 20(7):1613–1622. https://doi.org/10.17957/IJAB/15.0682

    Article  CAS  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz R, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    Article  CAS  Google Scholar 

  • Aziz ZFA, Saud HM, Rahim KA, Ahmed OH (2012) Variable responses on early development of shallot (Allium ascalonicum) and mustard (Brassica juncea) plants to Bacillus cereus inoculation. Malaysian J Micro 8:47–50

    Google Scholar 

  • Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30:1317–1322

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Bottini R, Luna MV, Baraldi R (1998) Production of IAA and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  • Ben-Asher J, Tsuyuki I, Bravdo BA, Sagih M (2006) Irrigation of grape vines with saline water, I. leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag 83:13–21

    Article  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different auto fluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant-Microbe Interact 13:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Bowles TM, Jackson LE, Cavagnaro TR (2018) Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob Chang Biol 24:171–182

    Article  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson LM, Kloepper JW (2014) Agricultural uses of plant bio stimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Chandra R, Pareek RP (2007) Effect of rhizobacteria in urdbean and lentil. Ind J Pulses Res 15:152–155

    Google Scholar 

  • Checcucci A, Bazzicalupo M, Mengoni A (2017) Exploiting nitrogen fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In: Anjum NA, Gill SS, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Biological approaches. Springer, Cham, pp 275–288

    Chapter  Google Scholar 

  • Chemin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 171–225

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai W-A, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Clair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Défago G, Berling CH, Burger U, Haas D, Kahr G, Keel C, Voisard C, Wirthner P, Wüthrich B (1992) Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. International Wallingford, Oxon UK, pp 93–108

    Google Scholar 

  • Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR- Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signal Behav 4:319–321

    Article  Google Scholar 

  • Döbereiner J, Day JM (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the 1st international symposium on nitrogen fixation. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Döbereiner J, Baldani VLD, Olivares FL, Reis VM (1994) Endophytic diazotrophs: the key to BNF in gramineous plants. In: Hegasi NA, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. The American University in Cairo Press, Egypt, pp 395–408

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Eaglesham ARJ (1989) Global importance of rhizobium as an inoculant. In: Campbell R, Macdonald RM (eds) Microbial inoculation of crop plants. IRL Press, Oxford/New York, pp 29–48

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571. https://doi.org/10.1007/s00374-009-0366-y

    Article  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • Fattah QA (2005) Plant resources for human development. In: 3rd international botanical conference 2005. Bangladesh Botanical Society, Dhaka, Bangladesh

    Google Scholar 

  • Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Sylla SND, Dreyfus B, Ba AM (2007) Arbuscular mycorrhizal colonization and nodulation improve tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159–166

    Article  CAS  PubMed  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The gram-positive side of plant-microbe interaction. Environ Microbial 12:1–12

    Article  CAS  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Fred EB, Baldwin I, McCoy M (1932) Root nodule bacteria and leguminous plants. Uni Wisconsin Studies in Sci

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiologica 156:609–643

    CAS  Google Scholar 

  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant-Microbe Interact 7:455–463

    Article  CAS  PubMed  Google Scholar 

  • Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Online. Plant Health Progress https://doi.org/10.1094/PHP-2002-0510-01-RV

    Article  Google Scholar 

  • Gestel VM, Merckx R, Vlassak K (1993) Microbial biomass responses to soil drying and wetting: the fate of fast- and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica:1–15

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Wang JD, Zhang J, Yang H (2006) Study of the antifungal ability of Bacillus subtilis strain PY-1 in-vitro and identification of its antifungal substance (Iturin A). Acta Biochim Biophys Sin 38:233–240

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW (2008) Effects of the inoculation of Burkholderia vietnamiensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grover M, Ali SKZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guerinot ML, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Ni Y, Huang J (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grasslands 44:109–114

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hamdia MA, Shaddad MAK, Doaa MM (2004) Mechanism of salt tolerance and interactive effect of Azospirillum bransilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Handelsman J, Stab EV (1996) Biocontrol of soil borne plant pathogens. Plant Cell 8:1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiologica 142:2321–2331

    CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Senath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Idris AH, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106

    Article  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Nazar R, Iqbal MRK, Masood A, Nafees AK (2011) Role of gibberellins in regulation of source sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in-vitro development of Glomus intraradices and on the in-vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jha Y, Subramanian RB (2018) Effect of root-associated bacteria on soluble sugar metabolism in plant under environmental stress. In: Ahmad P et al (eds) Plant metabolites and regulation under environmental stress. Academic, pp 231–240

    Google Scholar 

  • Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson M (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Soil Biol Biochem 103:117–130

    Google Scholar 

  • Jilani G, Akram AR, Ali M, Hafeez FY, Shamsi IH, Chaudhry AN, Chaudhry AG (2007) Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol 57:177–183

    Article  CAS  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155

    Article  PubMed  Google Scholar 

  • Kaur J, Pandove G, Gangwar M (2018) Mitigating the impact of climate change by use of microbial inoculants. Pharma Innov J 7:279–288

    CAS  Google Scholar 

  • Kaymak DC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Germany, p 16

    Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Waqas M, Kang SM (2014) Bacterial endophytes Sphingomonas spp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Meting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc, New York, pp 255–274

    Google Scholar 

  • Kloepper JW (1994) Plant growth promoting rhizobacteria: other systems. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 137–166

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie, Proceedings of the 4th international conference on plant pathogenic bacteria, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71:642–644

    Article  Google Scholar 

  • Labuschagne N, Pretorius T, Idris AH (2010) Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, microbiology monographs. Springer, Berlin, pp 211–230

    Chapter  Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  PubMed  Google Scholar 

  • Leonardo D, Blanca LF, Landa B, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluoresens. Phytopathology 96:751–762

    Article  CAS  Google Scholar 

  • Lloret J, Bolaños L, Lucas MM, Peart JM, Brewin NJ, Bonilla I, Rivilla R (1995) Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl Environ Microbiol 61:3701–3704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lübeck PS, Hansen M, Sørensen J (2000) Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol Ecol 33(1):11–19. https://doi.org/10.1111/j.1574-6941.2000.tb00721.x

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RM (1989) An overview of crop inoculation. In: Campbell R, Macdonald RM (eds) Microbial inoculation of crop plants. IRL Press, Oxford/New York, pp 1–9

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa TM (2007) Characterization of 1- Aminocyclopropane-1-carboxylate deaminase (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 226:867–876

    Article  CAS  PubMed  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335

    Article  CAS  Google Scholar 

  • Malboobi MA, Parviz O, Mandana B, Elaheh S, Sara M, Bagher Y, Ali D, Kambiz MH (2009) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U, Shalaman H, Meijer D, Lugtenberg B, Spaink H, Weinman J, Rodam L, Sautter C, Rolfe B, Djordjevic M (1997) New tools for investigating nodule initiation and ontogeny: spot inoculation and micro targeting of transgenic withe clover roots shows auxin involvement and suggest a role for flavonoids. In: Stacey G, Mullin B, Gresshoff P (eds) Advances in molecular genetics of plant–microbe interactions. Kluwer Academic, Dordrecht

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. Plant Growth Regul 18:49–53

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC deaminase confer salt tolerance in maize grown on salt affected soils. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nakkeeran S, Fernando WGD, Zaki A, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Narendrula-Kotha R, Nkongolo KK (2017) Microbial response to soil liming of damaged ecosystems revealed by pyrosequencing and phospholipid fatty acid analyses. PLoS One 12. https://doi.org/10.1371/journal.pone.0168497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny. Evolution and ecological significance. PLoS One 9. https://doi.org/10.1371/journal.pone.0099168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naz I, Bano A, Hassan T (2009) Morphological, biochemical and molecular characterization of rhizobia from halophytes of Khewra Salt range and Attock. Pak J Bot 41:3159–3168

    CAS  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nehra BSV (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res:21–29

    Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martin-Loucao MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster Trifolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Newbery F, Qi A, Fitt BD (2016) Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr Opin Plant Biol 32:101–109

    Article  PubMed  Google Scholar 

  • Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. USA Patent No. 570 813

    Google Scholar 

  • Nowak TB, Gould SJ, Kraus J, Loper JE (1994) Production of 2,4- diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40:1064–1066

    Article  Google Scholar 

  • Nunes JLD, de Souza PVD, Marodin GAB, Fachinello JC (2010) Effect of arbuscular mycorrhizal fungi and indole butyric acid interaction on vegetative growth of ‘Aldrighi’ peach rootstock seedlings. Cienc Agrotec 34:80–86

    Article  Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:182–186

    Article  Google Scholar 

  • Okon Y, Labandera-Gonza’lez C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years’ worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter Enzymogen strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall Fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  CAS  PubMed  Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth promoting rhizobacteria. Plant Growth Regul 35:877–902

    Article  CAS  Google Scholar 

  • Pavel V, Sobariu D, Fertu I, Statescu F (2013) Symbiosis in the environment bio management of soils contaminated with heavy metals. Eur J Sci Theol 9:211–224

    Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth simulation by microorganism: biotechnological applications of Bacillus in agriculture. Curr Opin Biotechnol 22:187–193

    Article  CAS  PubMed  Google Scholar 

  • Peter B, Bell C, Mancini LM, Lee MN, Conant RT, Wallenstein MD (2016) Phosphorus mobilizing consortium Mammoth P (™) enhances plant growth. Peer J. https://doi.org/10.7717/peerj.2121

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N (2017) Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol J:1–9

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, New York

    Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas spp. Appl Environ Microbiol 58:1284–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DP, Yucel I, Larkin RP (1998) Genetic approaches for analysis and manipulation of rhizosphere colonization by bacterial biocontrol agents. In: Boland GJ, Kendall LD (eds) Plant-microbe interactions and biological control in soils, plants and the environment. Marcel Dekker Inc, New York, pp 415–431

    Google Scholar 

  • Roley SS, Duncan DS, Liang D, Garoutte A, Jackson RD, Tiedje JM, Robertson GP (2018) Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. Plos One. https://doi.org/10.1371/journal.pone.0197320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romano S, Bondarev V, Kölling M, Dittmar T, Schulz-Vogt HN (2017) Phosphate limitation triggers the dissolution of precipitated iron by the marine bacterium Pseudo vibrio sp. FO-BEG 1. Front Microbiol 8:364

    PubMed  PubMed Central  Google Scholar 

  • Roper MM, Gupta VVSR (2016) Enhancing non-symbiotic N2 fixation in agriculture. Open Agric J 10:7–27

    Article  CAS  Google Scholar 

  • Rubenchik LI (1963) Azotobacter and its use in agriculture. Soil Sci 4:280

    Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti A (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Saleem MM, Arshad M, Yaseen M (2013) Effectiveness of various approaches to use rock phosphate as a potential source of plant available P for sustainable wheat production. Int J Agric Biol 15:223–230

    CAS  Google Scholar 

  • Salvagiotti F, Kenneth GC, James ES, Daniel TW, Weiss A, Dobermann AR (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13

    Article  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537

    Article  Google Scholar 

  • Saxena AK, Lata SR, Pandey AK (2005) Culturing of plant growth promoting rhizobacteria. In: Gopi KP, Varma A (eds) Basic research applications of mycorrhizae. I K International Pvt Ltd, New Delhi, pp 453–474

    Google Scholar 

  • Schmidt CS, Lorenz D, Wolf GA (2001) Biological control of the grapevine dieback fungus Eutypa lata I: screening of bacterial antagonists. J Phytopathol 149:427–435

    Article  Google Scholar 

  • Schütz L, Gattinger A, Meier M, Müller A, Boller T, Mäder P, Mathimaran N (2018) Improving crop yield and nutrient use efficiency via Biofertilization, a global meta-analysis. Front Plant Sci 8:2204

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Serraj R (2009) Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Ann Bot 104:1263–1280

    Article  CAS  Google Scholar 

  • Shaddad MAK, Abd El-Samad HM, Mostafa D (2013) Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars. Int J Plant Physiol Biochem 5:50–57

    CAS  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459

    Article  CAS  Google Scholar 

  • Shameer S, Prasad TNVKV (2018) Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615

    Article  CAS  Google Scholar 

  • Silveira JA, Viegas Rde A, da Rocha IM, Moreira AC, Moreira Rde A, Oliveira JT (2003) Proline accumulation and glutamine synthase activity are increased by salt induced proteolysis in cashew leaves. J Plant Physiol 160:115–123

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Sobariu DL, Fertu DIT, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PFX, Gavrilescu M (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134

    Article  CAS  Google Scholar 

  • Stephan MP (1979) Physiological studies with azospirillum spp. In: Vose PB, Ruschel AP (eds) Associative N2-fixation, vol I. CRC Press, Boca Raton, pp 7–14

    Google Scholar 

  • Strzelczyk E, Kamper M, Li C (1994) Cytokinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60

    Article  CAS  Google Scholar 

  • Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K (2017) Bottlenecks in commercialization and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Tang WH (1994) Yield-increasing bacteria and biocontrol of sheath blight of rice. In: Bowen GD, Ryder MH, Stephens PM (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 267–273

    Google Scholar 

  • Tang WH, Yang H (1997) Research and application of biocontrol of plant diseases and PGPR in China. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria-present status and future prospects. Hokkaido University, Sapporo, pp 4–9

    Google Scholar 

  • Tariq M, Noman M, Ahmed T, Hameed A, Manzoor N, Zafar M (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a Review. J Plant Sci Phytopathol 1:38–43

    Article  Google Scholar 

  • Teale WD, Paponov LA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • The editors of Encyclopædia Britannica (2018) Nitrogen-fixing bacteria. Encyclopædia Britannica, inc. https://www.britannica.com/science/nitrogen-fixing-bacteria

  • Thomine S, Lanquar V (2011) Iron transport and signaling in plants. In: Transporters and pumps in plant signaling. Springer, Berlin, pp 99–131

    Chapter  Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–212

    Article  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9

    Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22:2505–2514

    Article  CAS  Google Scholar 

  • Vadakattu G, Paterson J (2006) Free-living bacteria lift soil nitrogen supply. Farm Ahead 169:40

    Google Scholar 

  • Vance C (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:391–397

    Article  Google Scholar 

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LACJ, Van Der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 3:15

    Google Scholar 

  • Wang JF, Zhang YQ, Li Y, Wang XM, Nan WB, Hu YF, Zhang H, Zhao CZ, Wang F, Li P, Shi HY, Bi YR (2015) Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. Plant Cell Rep 34:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and release of GMOs. VCH, New York, pp 1–18

    Google Scholar 

  • Wu QS, Xia RX, Ying Y, Shen T, Xue B (2005) Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara. J Appl Ecol 16:865–869

    Google Scholar 

  • Yaacov O, Robin I (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Physiol 59:225–251

    CAS  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zandi P, Chalaras SK (2014) The importance of plant growth promoting thizobacteria (PGPR). In: Health and productivity of Agro-ecosystems, 5th international scientific agricultural symposium ‘Argosym 2014’ Jahorina, Bosnia and Herzegovina. https://doi.org/10.13140/2.1.4217.3442

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed A. Asad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afzal, A., Asad, S.A. (2019). Microbial Applications for Sustainable Agriculture. In: Farooq, M., Pisante, M. (eds) Innovations in Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23169-9_3

Download citation

Publish with us

Policies and ethics