Skip to main content

Heat Shock Protein 90 in Kidney Stone Disease

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

  • 507 Accesses

Abstract

Since early 2000s, proteomics has been applied to kidney stone research by its capability to uncover the previously unexplored or unknown proteins that are involved in kidney stone pathogenesis but had been previously hidden by the limitation of tools for protein science in the past. Using proteomics approach, several novel findings have been generated and a list of proteins involved in kidney stone formation or development has been expanded tremendously. One of such proteins is heat shock protein 90 (HSP90), which is generally known as a molecular chaperone. Its common roles are stress response and regulation of folding and conformation of many other proteins. However, new findings from recent proteomics studies have shown that HSP90 is also involved in kidney stone formation and disease mechanisms as summarized and discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-MS:

Affinity purification followed by mass spectrometry

COM:

Calcium oxalate monohydrate

ECM:

Extracellular matrix

HSP90:

Heat shock protein 90

IFN-α:

Interferon-α

IL-6:

Interleukin-6

MCP-1:

Monocyte chemoattractant protein-1

MS:

Mass spectrometry

MS/MS:

Tandem MS

Q-TOF:

Quadrupole time-of-flight

siHSP90:

Small interfering RNA targeting to HSP90

siRNA:

Small interfering RNA

TAP:

Tandem affinity purification

TNF-α:

Tumor necrosis factor-α

References

  • Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072

    Article  CAS  Google Scholar 

  • Bauer A, Kuster B (2003) Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem 270:570–578

    Article  CAS  PubMed  Google Scholar 

  • Chaiyarit S, Singhto N, Thongboonkerd V (2016) Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes. Chem Biol Interact 246:30–35

    Article  CAS  PubMed  Google Scholar 

  • de Water R, Noordermeer C, van der Kwast TH, Nizze H, Boeve ER, Kok DJ, Schroder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771

    Article  PubMed  Google Scholar 

  • de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schroder FH, Kok DJ (2000) Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625

    Article  PubMed  Google Scholar 

  • de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schroder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338

    Article  PubMed  Google Scholar 

  • Dominguez-Gutierrez PR, Kusmartsev S, Canales BK, Khan SR (2018) Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages. Front Immunol 9:1863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366

    Article  CAS  PubMed  Google Scholar 

  • Fong-ngern K, Peerapen P, Sinchaikul S, Chen ST, Thongboonkerd V (2011) Large-scale identification of calcium oxalate monohydrate crystal-binding proteins on apical membrane of distal renal tubular epithelial cells. J Proteome Res 10:4463–4477

    Article  CAS  PubMed  Google Scholar 

  • Fong-ngern K, Sueksakit K, Thongboonkerd V (2016) Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem 21:463–474

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Habibzadegah-Tari P, Byer KG, Khan SR (2006) Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urol Res 34:26–36

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth SR, Tipping PG (2007) Leukocytes in glomerular injury. Semin Immunopathol 29:355–374

    Article  PubMed  Google Scholar 

  • Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90alpha and triggers signalling pathways leading to the activation of NF-kappaB and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174

    Article  CAS  PubMed  Google Scholar 

  • Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88

    Article  CAS  PubMed  Google Scholar 

  • Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297

    Article  CAS  PubMed  Google Scholar 

  • Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR (2016) Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 195:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2010) Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem 55:73–83

    Article  CAS  PubMed  Google Scholar 

  • Manissorn J, Singhto N, Thongboonkerd V (2018) Characterizations of HSP90-interacting complex in renal cells using tandem affinity purification and its potential role in kidney stone formation. Proteomics 18:XXX

    Google Scholar 

  • Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924

    Article  CAS  PubMed  Google Scholar 

  • Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y et al (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25:2701–2711

    Article  PubMed  CAS  Google Scholar 

  • Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert G (2006) Stone analysis. Urol Res 34:146–150

    Article  PubMed  Google Scholar 

  • Sean EK, Cockwell P (2005) Macrophages and progressive tubulointerstitial disease. Kidney Int 68:437–455

    Article  Google Scholar 

  • Segerer S (2003) The role of chemokines and chemokine receptors in progressive renal diseases. Am J Kidney Dis 41:S15–S18

    Article  CAS  PubMed  Google Scholar 

  • Singhto N, Sintiprungrat K, Thongboonkerd V (2013) Alterations in macrophage cellular proteome induced by calcium oxalate crystals: the association of HSP90 and F-actin is important for phagosome formation. J Proteome Res 12:3561–3572

    Article  CAS  PubMed  Google Scholar 

  • Sintiprungrat K, Singhto N, Thongboonkerd V (2016) Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Mol BioSyst 12:879–889

    Article  CAS  PubMed  Google Scholar 

  • Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Griffin MD (2008) First responders: understanding monocyte-lineage traffic in the acutely injured kidney. Kidney Int 74:1509–1511

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, Mizuno K, Tozawa K, Kohri K, Yasui T (2016) M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep 6:35167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thongboonkerd V (2004) Proteomics in nephrology: current status and future directions. Am J Nephrol 24:360–378

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V (2005) Proteomic analysis of renal diseases: unraveling the pathophysiology and biomarker discovery. Expert Rev Proteomics 2:349–366

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V (2007a) Practical points in urinary proteomics. J Proteome Res 6:3881–3890

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V (2007b) Recent progress in urinary proteomics. Proteomics Clin Appl 1:780–791

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V (2008) Proteomics and kidney stone disease. Contrib Nephrol 160:142–158

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V, Malasit P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Umekawa T, Tsuji H, Uemura H, Khan SR (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkoelen CF, Verhulst A (2007) Proposed mechanisms in renal tubular crystal retention. Kidney Int 72:13–18

    Article  CAS  PubMed  Google Scholar 

  • Verkoelen CF, van der Boom BG, Kok DJ, Romijn JC (2000a) Sialic acid and crystal binding. Kidney Int 57:1072–1082

    Article  CAS  PubMed  Google Scholar 

  • Verkoelen CF, van der Boom BG, Romijn JC (2000b) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Vinaiphat A, Thongboonkerd V (2017) Prospects for proteomics in kidney stone disease. Expert Rev Proteomics 14:185–187

    Article  CAS  PubMed  Google Scholar 

  • Vinaiphat A, Aluksanasuwan S, Manissorn J, Sutthimethakorn S, Thongboonkerd V (2017) Response of renal tubular cells to differential types and doses of calcium oxalate crystals: integrative proteome network analysis and functional investigations. Proteomics 17:1700192

    Article  CAS  Google Scholar 

  • Wilson HM, Walbaum D, Rees AJ (2004) Macrophages and the kidney. Curr Opin Nephrol Hypertens 13:285–290

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Song Y, Li Y, Chang J, Zhang H, An L (2010) The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 72:149–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004 and IRG5980006).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thongboonkerd, V. (2019). Heat Shock Protein 90 in Kidney Stone Disease. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_26

Download citation

Publish with us

Policies and ethics