Skip to main content

Hsp90 as a Member of Dicarboxylate Clamp TPR Protein Interaction Network: Implication in Human Diseases and Prospect as a Drug Target

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

Heat shock protein (Hsp) 90 kDa is a widely expressed molecular chaperone and is involved in folding of broad range of client proteins, intracellular transport and degradation of damaged and misfolded proteins. The function of Hsp90 is mediated through its partner co-chaperones, which either affects the ATPase activity or directly helps Hsp90 to interact with its specific client proteins. Tetratricopeptide repeat (TPR) domain containing proteins represent a major class of co-chaperones which interact with the extreme C-terminus of Hsp90 through a dicarboxylate clamp mechanism. We have recently suggested that Hsp90 and Hsp70 molecular chaperones belong to dicarboxylate clamp protein interaction network where proteins containing similar C-terminus as that of Hsp90/Hsp70 interact with TPR motif containing proteins through dicarboxylate clamp mechanism. Recent findings suggest that several of TPR co-chaperones have been involved in variety of human diseases such as tauopathy and amyloidopathy in Alzheimer’s disease, cancer, metabolic disorders, inflammation and others. In this chapter, we discuss the potential of Hsp90 TPR containing co-chaperones as drug targets in human disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aha1:

Activator of 90 kDa heat shock protein ATPase homolog 1

AIP:

Arylhydrocarbon receptor-interacting protein

CFTR:

Cystic fibrosis transmembrane conductance regulator

CHIP:

C terminus of HSC70-interacting protein

CK1, CK2:

Casein kinase 1 and casein kinase 2

Cyp40:

Cyclophilin 40 kDa

dcTPR:

Dicarboxylate clamp tetratricopeptide repeat

FKBP:

FK506-binding protein

GO:

Gene ontology

GR:

Glucocorticoid receptor

GSK3β:

Glycogen synthase kinase 3 beta

HCV:

Hepatitis C virus

HOP:

Hsp70-Hsp90 organizing protein

Hsp:

Heat shock protein

p23:

Prostaglandin E synthase 3

PP5:

Protein phosphatase 5

PPIase:

Peptidyl-prolyl cis-trans isomerase

PPIs:

Protein-protein interactions

SGTA:

Small, glutamine-rich, tetratricopeptide repeat protein alpha

Tom70:

Translocase of the outer mitochondrial membrane

TPR:

Tetratricopeptide repeat

References

  • Balsevich G, Hausl AS, Meyer CW et al (2017) Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun 8:1725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banasavadi-Siddegowda YK, Mai J, Fan Y et al (2011) FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J Biol Chem 286:43071–43080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernadotte A, Kumar R, Winblad B, Pavlov PF (2018) In silico identification and biochemical characterization of the human dicarboxylate clamp TPR protein interaction network. FEBS Open Biol 8:1830–1843

    Article  CAS  Google Scholar 

  • Blair LJ, Nordhues BA, Hill SE et al (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123:4158–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose S, Weikl T, Bugl H, Buchner J (1996) Chaperone function of Hsp90-associated proteins. Science 274:1715–1717

    Article  CAS  PubMed  Google Scholar 

  • Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P (2015) Maximizing the therapeutic potential of HSP90 inhibitors. Mol Cancer Res 13:1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung-Flynn J, Roberts PJ, Riggs DL, Smith DF (2003) C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90. J Biol Chem 278:17388–17394

    Article  CAS  PubMed  Google Scholar 

  • Criado-Marrero M, Rein T, Binder EB, Porter JT, Koren J, 3rd, Blair LJ (2018) Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond Ser B Biol Sci 373

    Article  CAS  Google Scholar 

  • D’Arrigo P, Russo M, Rea A et al (2017) A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget 8:68291–68304

    PubMed  PubMed Central  Google Scholar 

  • Davies TH, Sanchez ER (2005) FKBP52. Int J Biochem Cell Biol 37:42–47

    Article  CAS  PubMed  Google Scholar 

  • Davies TH, Ning YM, Sanchez ER (2002) A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 277:4597–4600

    Article  CAS  PubMed  Google Scholar 

  • Dlugosz A, Janecka A (2017) Novobiocin analogs as potential anticancer agents. Mini-Rev Med Chem 17:728–733

    Article  CAS  PubMed  Google Scholar 

  • Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edlich F, Erdmann F, Jarczowski F, Moutty MC, Weiwad M, Fischer G (2007) The Bcl-2 regulator FKBP38-calmodulin-Ca2+ is inhibited by Hsp90. J Biol Chem 282:15341–15348

    Article  CAS  PubMed  Google Scholar 

  • Fan AC, Kozlov G, Hoegl A et al (2011) Interaction between the human mitochondrial import receptors Tom20 and Tom70 in vitro suggests a chaperone displacement mechanism. J Biol Chem 286:32208–32219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraro M, D’Annessa I, Moroni E et al (2018) Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J Med Chem 62:60–87

    Article  PubMed  CAS  Google Scholar 

  • Fonte V, Kapulkin WJ, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99:9439–9444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry DC (2015) Targeting protein-protein interactions for drug discovery. Methods Mol Biol 1278:93–106

    Article  CAS  PubMed  Google Scholar 

  • Gaali S, Kirschner A, Cuboni S et al (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11:33–37

    Article  CAS  PubMed  Google Scholar 

  • Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB (2015) Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 78:35–68

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Wagner KV, Gaali S et al (2015) Pharmacological inhibition of the psychiatric risk factor FKBP51 has anxiolytic properties. J Neurosci 35:9007–9016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck V, Eckl JM, Kaiser CJO, Papsdorf K, Hessling M, Richter K (2013) Chaperone-interacting TPR proteins in Caenorhabditis elegans. J Mol Biol 425:2922–2939

    Article  CAS  PubMed  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  PubMed  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Sayner SL, Gross KL, Russell LC, Chinkers M (2001) Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry 40:10485–10490

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Moche M, Winblad B, Pavlov PF (2017) Combined x-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51. Sci Rep 7:14288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX (2005) Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem 280:1790–1796

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Sun W, Taldone T, Rodina A, Chiosis G (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiaru M, Tochiki KK, Cox MB et al (2016) The stress regulator FKBP51 drives chronic pain by modulating spinal glucocorticoid signaling. Sci Transl Med 8:325ra19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiaru M, Morgan OB, Mao T et al (2018) The stress regulator FKBP51: a novel and promising druggable target for the treatment of persistent pain states across sexes. Pain 159:1224–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matosin N, Halldorsdottir T, Binder EB (2018) Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: the FKBP5 model. Biol Psychiatry 83:821–830

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Chambraud B, Radanyi C et al (1997) Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: regulation of HSP90-binding activity of FKBP52. Proc Natl Acad Sci USA 94:14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller P, Ruckova E, Halada P et al (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32:3101–3110

    Article  CAS  PubMed  Google Scholar 

  • Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM (2010) FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 30:1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto T, Nishimura Y, Ichimura T et al (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Leary JC III, Dharia S, Blair LJ et al (2011) A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One 6:e24840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov PF, Hutter-Paier B, Havas D, Windisch M, Winblad B (2018) Development of GMP-1 a molecular chaperone network modulator protecting mitochondrial function and its assessment in fly and mice models of Alzheimer’s disease. J Cell Mol Med 22:3464–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C, Siligardi G, O'Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey AJ, Chinkers M (2002) Identification of potential physiological activators of protein phosphatase 5. Biochemistry 41:5625–5632

    Article  CAS  PubMed  Google Scholar 

  • Romano S, Staibano S, Greco A et al (2013) FK506 binding protein 51 positively regulates melanoma stemness and metastatic potential. Cell Death Dis 4:e578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo D, Merolla F, Mascolo M et al (2017) FKBP51 immunohistochemical expression: a new prognostic biomarker for OSCC? Int J Mol Sci 18:443

    Article  PubMed Central  CAS  Google Scholar 

  • Sanchez-Ortiz E, Hahm BK, Armstrong DL, Rossie S (2009) Protein phosphatase 5 protects neurons against amyloid-beta toxicity. J Neurochem 111:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  CAS  PubMed  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  CAS  PubMed  Google Scholar 

  • Schrodinger LLC (2015) The PyMOL molecular graphics system, Version 1.8

    Google Scholar 

  • Shimamoto S, Takata M, Tokuda M, Oohira F, Tokumitsu H, Kobayashi R (2008) Interactions of S100A2 and S100A6 with the tetratricopeptide repeat proteins, Hsp90/Hsp70-organizing protein and kinesin light chain. J Biol Chem 283:28246–28258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamoto S, Kubota Y, Tokumitsu H, Kobayashi R (2010) S100 proteins regulate the interaction of Hsp90 with Cyclophilin 40 and FKBP52 through their tetratricopeptide repeats. FEBS Lett 584:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto S, Kubota Y, Yamaguchi F, Tokumitsu H, Kobayashi R (2013) Ca2+/S100 proteins act as upstream regulators of the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein). J Biol Chem 288:7158–7168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamoto S, Tsuchiya M, Yamaguchi F, Kubota Y, Tokumitsu H, Kobayashi R (2014) Ca2+/S100 proteins inhibit the interaction of FKBP38 with Bcl-2 and Hsp90. Biochem J 458:141–152

    Article  CAS  PubMed  Google Scholar 

  • Soroka J, Wandinger SK, Mausbacher N et al (2012) Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol Cell 45:517–528

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SK, Bhardwaj A, Arora S et al (2015) Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis. Br J Cancer 112:1772–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stechschulte LA, Qiu B, Warrier M et al (2016) FKBP51 null mice are resistant to diet-induced obesity and the PPARgamma agonist rosiglitazone. Endocrinology 157:3888–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verba KA, Wang RY, Arakawa A et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi F, Umeda Y, Shimamoto S et al (2012) S100 proteins modulate protein phosphatase 5 function: a link between CA2+ signal transduction and protein dephosphorylation. J Biol Chem 287:13787–13798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Roe SM, Cliff MJ et al (2005) Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J 24:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3:645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi F, Zhu P, Southall N et al (2009) An AlphaScreen-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen 14:273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Henry EC, Gasiewicz TA (2009) (-)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345

    Article  CAS  PubMed  Google Scholar 

  • Zeke T, Morrice N, Vazquez-Martin C, Cohen PT (2005) Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole. Biochem J 385:45–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledements

The work was supported by research grants from the Swedish Research Council (2015-02774, 2018-002843), Stiftelsen Olle Enqvist Byggmästare, Margareta af Ugglas Foundation, Foundation for Geriatric Diseases at Karolinska Institutet, Loo & Hans Osterman Foundation, KI Foundations, Lindhés Advokatbyrå AB Foundation, Gunvor and Josef Anérs Foundation, the Swedish Brain Foundation, Magnus Bergvalls Foundation, Gun and Bertil Stohnes Foundation, Tore Nilssons Foundation for medical research, and the Foundation for Old Servants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel F. Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Winblad, B., Pavlov, P.F. (2019). Hsp90 as a Member of Dicarboxylate Clamp TPR Protein Interaction Network: Implication in Human Diseases and Prospect as a Drug Target. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_14

Download citation

Publish with us

Policies and ethics