Skip to main content

Role of the Post-translational Modifications of HSP60 in Disease

  • Chapter
  • First Online:
Heat Shock Protein 60 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 18))

Abstract

Heat Shock Protein 60 (HSP60) is primarily a chaperone protein responsible for refolding proteins in the mitochondria. Nevertheless it has numerous other pro- and anti-apoptotis and signalling functions which it achieves through a variety of post-translational modifications (PTMs). Increasing evidence indicates that in disease states from cancer to systemic inflammation, such modifications become dysregulated, and as a result HSP60 cannot perform its functions. Understanding the biological role of these PTMs in healthy and disease states, the context in which they are generated and removed, as well as the mechanisms by which they can be targetted and modulated extraneously will help to provide better therapeutic solutions to deal with a wide range of conditions driven by stress-related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A Disintegrin And Metalloproteinase

aDMA:

asymmetric N,N-di-methylarginine

AdoMet:

S-adenosyl-L-methioinine

Akt:

protein kinase B

APCs:

antigen-presenting cells

ATP:

adenosine triphosphate

β-O-GlyNAcylation:

O-linked N-acetylglucosamine

Bak:

BCL2 Antagonist/Killer 1

Bax:

BCL2-Associated X Protein

BCL2:

B-Cell Chronic Lymphocytic Leukemia/Lymphoma 2

BCL2-L1:

Bcl-2-Like Protein 1

CD:

cluster of differentiation

CLEC:

C-type lectin

DNA:

deoxyribonucleic acid

Dox:

Doxorubicin

E1s:

ubiquitin-activating enzymes

E2s:

ubiquitin-conjugating enzymes

E3s:

ubiquitin ligases

ER:

endoplasmic reticulum

ERB:

eukaryotic ribosome biogenesis protein

ETF:

electron transfer flavoprotein

ExAC:

Exome Aggregation Consortium

GA:

Geldanamycin

GPI anchor:

Glycosylphosphatidylinositol anchor

H2B:

histone 2B

HATs:

histone acetyltransferases

HDACis:

Histone deacetylase inhibitors

HDACs:

histone deacetylases

HSE:

heat shock response element

HSF1:

heat shock factor 1

HSP:

heat shock protein/s

IL-1b:

interleukin-1b

iNOS:

inducible nitric oxide synthase

K:

lysine

KATs:

lysine acetyltransferases

KDACs:

lysine deacetylases

KO:

knock-out

M:

methionine

METTL:

Methyltransferase-like

MHC:

major histocompatibility complex

MIRKO:

muscle insulin receptor knockout

MMPs:

matrix metalloproteases

N:

asparagine

NAC:

N-acetyl-cysteine

NATs:

N-terminal acetyltransferases

NF-kB:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

NKG2D:

Natural killer group 2 member D receptor

NO:

nitric oxide

NSP4:

nonstructural protein 4

PKA-I:

protein kinase A, type 1

PKMTs:

protein lysine methyltransferases

PRL-3:

phosphatase of Regenerating Liver 3

PRMTs:

protein arginine methyltransferases

PTMs:

post-translational modifications

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

S:

serine

SAHA:

Suberoylanilide hydroxamic acid

SET:

Su(var)3-9, Enhancer-of-zeste and Trithorax

SIRT:

sirtuin

SNP:

single nucleotide polymorphism

Src:

sarcoma

T:

threonine

TLR:

toll-like-receptor

ULBP2:

UL16 binding protein 2

Y:

tyrosine

References

  • Abdelmegeed MA, Song BJ (2014) Functional roles of protein nitration in acute and chronic liver diseases. Oxidative Med Cell Longev 2014:149627

    Article  CAS  Google Scholar 

  • Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238

    Article  CAS  PubMed  Google Scholar 

  • Akimoto Y, Kreppel LK, Hirano H, Hart GW (2001) Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells: elevated expression and altered patterns of O-GlcNAcylation. Arch Biochem Biophys 389(2):166–175

    Article  CAS  PubMed  Google Scholar 

  • Al-Aidaroos AQO, Zeng Q (2010) PRL-3 phosphatase and cancer metastasis. J Cell Biochem 111(5):1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A (2006) Inflammatory process in type 2 diabetes. Ann N Y Acad Sci 1084(1):89–117

    Article  CAS  PubMed  Google Scholar 

  • Alrob OA, Sankaralingam S, Ma C, Wagg CS, Fillmore N, Jaswal JS, Sack MN, Lehner R, Gupta MP, Michelakis ED, Padwal RS (2014) Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc Res 103(4):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri P, Spallarossa P, Barisione C, Garibaldi S, Garuti A, Fabbi P, Ghigliotti G, Brunelli C (2012) Inhibition of doxorubicin-induced senescence by PPARδ activation agonists in cardiac muscle cells: cooperation between PPARδ and Bcl6. PLoS One 7(9):e46126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ande SR, Moulik S, Mishra S (2009) Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch. PLoS One 4(2):e4586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arias AE, Vélez-Granell CS, Mayer G, Bendayan M (2000) Colocalization of chaperone Cpn60, proinsulin and convertase PC1 within immature secretory granules of insulin-secreting cells suggests a role for Cpn60 in insulin processing. J Cell Sci 113(11):2075–2083

    CAS  PubMed  Google Scholar 

  • Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci 117(16):3645–3657

    Article  CAS  PubMed  Google Scholar 

  • Avidan A, Perlmutter M, Tal S, Oraki O, Kapp T, Krelin Y, Elkabets M, Dotan S, Apte RN, Lichtenstein RG (2009) Differences in the sialylation patterns of membrane stress proteins in chemical carcinogen-induced tumors developed in BALB/c and IL-1α deficient mice. Glycoconj J 26(9):1181

    Article  CAS  PubMed  Google Scholar 

  • Bailey LM, Wallace JC, Polyak SW (2010) Holocarboxylase synthetase: correlation of protein localisation with biological function. Arch Biochem Biophys 496(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Bao B, Wijeratne SS, Rodriguez-Melendez R, Zempleni J (2011) Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity. Biochem Biophys Res Commun 412(1):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD (2002) Identification of heat shock protein 60 as a molecular mediator of α3β1 integrin activation. Cancer Res 62(5):1541–1548

    CAS  PubMed  Google Scholar 

  • Baron B (2015) Lysine methylation of non-histone proteins. Biochem Mod Appl 1:1–2

    Google Scholar 

  • Baron B (2018) The diagnostic and prognostic application of heat shock proteins and their post-translational modifications from liquid biopsies. IntechOpen [Online First]

    Google Scholar 

  • Barone R, Rappa F, Macaluso F, Bavisotto CC, Sangiorgi C, Di Paola G, Tomasello G, Di Felice V, Marcianò V, Farina F, Zummo G (2016) Alcoholic liver disease: a mouse model reveals protection by Lactobacillus fermentum. Clin Transl Gastroenterol 7(1):e138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ (2004) The Pfam protein families database. Nucleic Acids Res 32(Suppl 1):D138–D141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernkopf M, Webersinke G, Tongsook C, Koyani CN, Rafiq MA, Ayaz M, Müller D, Enzinger C, Aslam M, Naeem F, Schmidt K (2014) Disruption of the methyltransferase-like 23 gene METTL23 causes mild autosomal recessive intellectual disability. Hum Mol Genet 23(15):4015–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessette DC, Qiu D, Pallen CJ (2008) PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev 27(2):231–252

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, Bagchi P, Nayak MK, Chakrabarti O, Kobayashi N, Chawla-Sarkar M (2012) Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J Biol Chem 287(42):35004–35020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bie AS, Fernandez-Guerra P, Birkler RI, Nisemblat S, Pelnena D, Lu X, Deignan JL, Lee H, Dorrani N, Corydon TJ, Palmfeldt J (2016) Effects of a mutation in the HSPE1 gene encoding the mitochondrial co-chaperonin HSP10 and its potential association with a neurological and developmental disorder. Front Mol Biosci 3:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dörken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660

    Article  CAS  PubMed  Google Scholar 

  • Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9(3):476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bross P, Fernandez-Guerra P (2016) Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex. Front Mol Biosci 3:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brudzynski K, Martinez V (1993) Synaptophysin-containing microvesicles transport heat-shock protein hsp60 in insulin-secreting beta cells. Cytotechnology 11(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  CAS  PubMed  Google Scholar 

  • Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol-Endocrinol Metab 290(1):E1–E8

    Article  CAS  PubMed  Google Scholar 

  • Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C, Thaler HT, Rifkind RA, Marks PA, Richon VM (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60(18):5165–5170

    CAS  PubMed  Google Scholar 

  • Campanella C, Marino Gammazza A, Mularoni L, Cappello F, Zummo G, Di Felice V (2009) A comparative analysis of the products of GROEL-1 gene from chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Int J Immunogenet 36(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DF, Barbieri G, David S, Farina F, Zummo G, de Macario EC (2012) The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One 7(7):e42008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanella C, Bavisotto CC, Gammazza AM, Nikolic D, Rappa F, David S, Cappello F, Bucchieri F, Fais S (2014) Exosomal heat shock proteins as new players in tumour cell-to-cell communication. J Circulating Biomark 3:4

    Article  CAS  Google Scholar 

  • Campanella C, Rappa F, Sciumè C, Marino Gammazza A, Barone R, Bucchieri F, David S, Curcurù G, Caruso Bavisotto C, Pitruzzella A, Geraci G (2015) Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 121(18):3230–3239

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, D'Anneo A, Gammazza AM, Bavisotto CC, Barone R, Emanuele S, Cascio FL, Mocciaro E, Fais S, De Macario EC, Macario AJ (2016) The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 7(20):28849

    Article  PubMed  Google Scholar 

  • Cao XJ, Arnaudo AM, Garcia BA (2013) Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8(5):477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappello F, Zummo G (2005) HSP60 expression during carcinogenesis: a molecular “Proteus” of carcinogenesis? Cell Stress Chaperones 10(4):263

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappello F, Bellafiore M, David S, Anzalone R, Zummo G (2003) Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Lett 196(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Cappello F, David S, Rappa F, Bucchieri F, Marasà L, Bartolotta TE, Farina F, Zummo G (2005) The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 5(1):139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cappello F, Bellafiore M, Palma A, David S, Marcianà V, Bartolotta T, Sciumà C, Modica G, Farina F, Zummo G, Bucchieri F (2009) 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47(2):105–110

    Article  Google Scholar 

  • Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18(2):185–208

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of Hsp60 during apoptosis with or without apparent mitochondrial release evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282(43):31289–31301

    Article  CAS  PubMed  Google Scholar 

  • Chao CC, Sun FC, Wang CH, Lo CW, Chang YS, Chang KC, Chang MDT, Lai YK (2008) Concerted actions of multiple transcription elements confer differential transactivation of HSP90 isoforms in geldanamycin-treated 9L rat gliosarcoma cells. J Cell Biochem 104(4):1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Chapman-Smith A, Cronan JE Jr (1999) Molecular biology of biotin attachment to proteins. J Nutr 129(2):477S–484S

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, Chawla-Sarkar M (2017) Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol 19(3):e12670

    Article  CAS  Google Scholar 

  • Chavarría C, Souza JM (2013) Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys 533(1–2):25–32

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162(6):3212–3219

    CAS  PubMed  Google Scholar 

  • Chen W, Wang J, Shao C, Liu S, Yu Y, Wang Q, Cao X (2006) Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur J Immunol 36(6):1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhao Y, Gou WF, Zhao S, Takano Y, Zheng HC (2013) The anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) on the aggressive phenotypes of ovarian carcinoma cells. PLoS One 8(11):e79781

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Cole RN, Zaia J, Hart GW (2000) Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor β. Biochemistry 39(38):11609–11620

    Article  CAS  PubMed  Google Scholar 

  • Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J (2006) Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem 17(4):225–233

    Article  CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer EM, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15(6):851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B (2013) A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet 9(1):e1003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comer FI, Hart GW (2001) Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40(26):7845–7852

    Article  CAS  PubMed  Google Scholar 

  • Copeland RJ, Bullen JW Jr, Hart GW (2008) Crosstalk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol-Endocrinol Metab 295:E17–E28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett JA, McDaniel ML (1995) Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase. J Exp Med 181(2):559–568

    Article  CAS  PubMed  Google Scholar 

  • Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5(7):714–720

    Article  CAS  PubMed  Google Scholar 

  • Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M (2010) Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1-and RIP3-mediated necrosis. Free Radic Biol Med 48(2):306–317

    Article  CAS  PubMed  Google Scholar 

  • De Bellis F, Carafa V, Conte M, Rotili D, Petraglia F, Matarese F, Françoijs KJ, Ablain J, Valente S, Castellano R, Goubard A (2014) Context-selective death of acute myeloid leukemia cells triggered by the novel hybrid retinoid-HDAC inhibitor MC2392. Cancer Res 74(8):2328–2339

    Article  PubMed  CAS  Google Scholar 

  • Dentin R, Hedrick S, Xie J, Yates J, Montminy M (2008) Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319(5868):1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta (BBA)-Proteins Proteomics 1864(10):1372–1401

    Article  CAS  Google Scholar 

  • Eren MK, Kilincli A, Eren Ö (2015) Resveratrol induced premature senescence is associated with DNA damage mediated SIRT1 and SIRT2 down-regulation. PLoS One 10(4):e0124837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrugia M, Baron B (2017) The role of Toll-like receptors in autoimmune diseases through failure of the self-recognition mechanism. Int J Inflamm 2017:8391230

    Article  CAS  Google Scholar 

  • Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R, Herger B, Yang Y, Atadja P, Wu J, Bhalla K (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-α levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13(16):4882–4890

    Article  CAS  PubMed  Google Scholar 

  • Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR (2012) Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J Proteome Res 11(3):1633–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammazza AM, Campanella C, Barone R, Bavisotto CC, Gorska M, Wozniak M, Carini F, Cappello F, D'Anneo A, Lauricella M, Zummo G (2017) Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett 385:75–86

    Article  CAS  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283(8):5188–5194

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70(22):8988–8993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  CAS  PubMed  Google Scholar 

  • Gorska M, Gammazza AM, Zmijewski MA, Campanella C, Cappello F, Wasiewicz T, Kuban-Jankowska A, Daca A, Sielicka A, Popowska U, Knap N (2013) Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60). PLoS One 8(8):e71135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W (2015) Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 40:72–81. Academic Press

    Article  CAS  PubMed  Google Scholar 

  • Gu TL, Deng X, Huang F, Tucker M, Crosby K, Rimkunas V, Wang Y, Deng G, Zhu L, Tan Z, Hu Y (2011a) Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One 6(1):e15640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Ande SR, Mishra S (2011b) Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose. Arch Biochem Biophys 505(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Gueugnon F, Cartron PF, Charrier C, Bertrand P, Fonteneau JF, Gregoire M, Blanquart C (2014) New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells. Oncotarget 5(12):4504

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo K, Li J, Ping Tang J, Bobby Tan CP, Wang H, Wang H, Zeng Q (2008) Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol Ther 7(5):750–757

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, Vogel H, Mills AA (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11(12):1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106(21):2727–2733

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Knowlton AA (2005) HSP60, Bax, apoptosis and the heart. J Cell Mol Med 9(1):51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha K, Fiskus W, Choi DS, Bhaskara S, Cerchietti L, Devaraj SG, Shah B, Sharma S, Chang JC, Melnick AM, Hiebert S (2014) Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 5(14):5637

    Article  PubMed  PubMed Central  Google Scholar 

  • Haaland I, Opsahl JA, Berven FS, Reikvam H, Fredly HK, Haugse R, Thiede B, McCormack E, Lain S, Bruserud Ø, Gjertsen BT (2014) Molecular mechanisms of nutlin-3 involve acetylation of p53, histones and heat shock proteins in acute myeloid leukemia. Mol Cancer 13(1):116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hageman J, Rujano MA, Van Waarde MA, Kakkar V, Dirks RP, Govorukhina N, Oosterveld-Hut HM, Lubsen NH, Kampinga HH (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37(3):355–369

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Lee SH, Lee GK, Yun T, Lee YJ, Hwang KH, Kim JY, Kim HT (2015) Phase I/II study of gefitinib (Iressa®) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 75(3):475–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen JJ, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70(5):1328–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes GR, Williams A, Costello CE, Enns CA, Lucas JJ (1995) The critical glycosylation site of human transferrin receptor contains a high-mannose oligosaccharide. Glycobiology 5(2):227–232

    Article  CAS  PubMed  Google Scholar 

  • Hayoun D, Kapp T, Edri-Brami M, Ventura T, Cohen M, Avidan A, Lichtenstein RG (2012) HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J 279(12):2083–2095

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369

    Article  CAS  PubMed  Google Scholar 

  • Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, Steinle A, Salih HR (2012) Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol 189(3):1360–1371

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Huang FI, Mehndiratta S, Lai SC, Liou JP, Yang CR (2015) Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget 6(21):18590

    PubMed  PubMed Central  Google Scholar 

  • Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28(5):730–738

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Feltstrom J, Lundquist I, Salehi A (2005) Glucose stimulates the expression and activities of nitric oxide synthases in incubated rat islets: an effect counteracted by GLP-1 through the cyclic AMP/PKA pathway. Cell Tissue Res 319(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Jindal S, Dudani AK, Singh BHAG, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9(5):2279–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci 108(35):14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamemura K, Hayes BK, Comer FI, Hart GW (2002) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem 277(21):19229–19235

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Spodnik JH, Teranishi MA, Wozniak M, Nishizawa Y, Usukura J, Wakabayashi T (2001) Opposite effects of microtubule-stabilizing and microtubule-destabilizing drugs on biogenesis of mitochondria in mammalian cells. J Cell Sci 114(2):281–291

    CAS  PubMed  Google Scholar 

  • Kaul Z, Yaguchi T, Kaul SC, Wadhwa R (2006) Quantum dot-based protein imaging and functional significance of two mitochondrial chaperones in cellular senescence and carcinogenesis. Ann N Y Acad Sci 1067(1):469–473

    Article  CAS  PubMed  Google Scholar 

  • Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266(24):15555–15558

    CAS  PubMed  Google Scholar 

  • Khan IU, Wallin R, Gupta RS, Kammer GM (1998) Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proc Natl Acad Sci 95(18):10425–10430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi I, Nakayama Y, Morinaga T, Fukumoto Y, Yamaguchi N (2010) A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence. Cell Biol Int 34(6):645–653

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166

    CAS  PubMed  Google Scholar 

  • Kim HR, Kang HS, Do Kim H (1999) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life 48(4):429–433

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim EM, Lee J, Yang WH, Park TY, Kim YM, Cho JW (2006) Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic β-cell death under hyperglycemic conditions. FEBS Lett 580(9):2311–2316

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A, Marks P, Frankel P, Sun X, Tosolini A, Eid JE (2014) A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. Br J Haematol 167(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • Koeck T, Corbett JA, Crabb JW, Stuehr DJ, Aulak KS (2009) Glucose-modulated tyrosine nitration in beta cells: targets and consequences. Arch Biochem Biophys 484(2):221–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koll H, Guiard B, Rassow J, Ostermann J, Horwich AL, Neupert W, Hartl FU (1992) Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 68(6):1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Kurz EU, Douglas P, Lees-Miller SP (2004) Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279(51):53272–53281

    Article  CAS  PubMed  Google Scholar 

  • Lai MT, Huang KL, Chang WM, Lai YK (2003) Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 15(6):585–595

    Article  CAS  PubMed  Google Scholar 

  • Lakey JR, Suarez-Pinzon WL, Strynadka K, Korbutt GS, Rajotte RV, Mabley JG, Szabó C, Rabinovitch A (2001) Peroxynitrite is a mediator of cytokine-induced destruction of human pancreatic islet β cells. Lab Investig 81(12):1683

    Article  CAS  PubMed  Google Scholar 

  • Lauricella M, Ciraolo A, Carlisi D, Vento R, Tesoriere G (2012) SAHA/TRAIL combination induces detachment and anoikis of MDA-MB231 and MCF-7 breast cancer cells. Biochimie 94(2):287–299

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Dikiy A, Kim HY, Gladyshev VN (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta (BBA)-Gen Subj 1790(11):1471–1477

    Article  CAS  Google Scholar 

  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32(suppl_1):D142–D144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung WH, Vong QP, Lin W, Bouck D, Wendt S, Sullivan E, Li Y, Bari R, Chen T, Leung W (2015) PRL-3 mediates the protein maturation of ULBP2 by regulating the tyrosine phosphorylation of HSP60. J Immunol 194(6):2930–2941

    Article  CAS  PubMed  Google Scholar 

  • Levy-Rimler G, Viitanen P, Weiss C, Sharkia R, Greenberg A, Niv A, Lustig A, Delarea Y, Azem A (2001) The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. Eur J Biochem 268(12):3465–3472

    Article  CAS  PubMed  Google Scholar 

  • Li XS, Xu Q, Fu XY, Luo WS (2014a) Heat shock protein 60 overexpression is associated with the progression and prognosis in gastric cancer. PLoS One 9(9):e107507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Malkaram SA, Zhou J, Zempleni J (2014b) Lysine biotinylation and methionine oxidation in the heat shock protein HSP60 synergize in the elimination of reactive oxygen species in human cell cultures. J Nutr Biochem 25(4):475–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360(2):114–118

    Article  CAS  PubMed  Google Scholar 

  • Lim Y, Lee E, Lee J, Oh S, Kim S (2008) Down-regulation of asymmetric arginine methylation during replicative and H2O2-induced premature senescence in WI-38 human diploid fibroblasts. J Biochem 144(4):523–529

    Article  CAS  PubMed  Google Scholar 

  • Lim Y, Hong E, Kwon D, Lee E (2010) Proteomic identification and comparative analysis of asymmetrically arginine-methylated proteins in immortalized, young and senescent cells. Electrophoresis 31(23–24):3823–3833

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Paterson AJ, Chin E, Kudlow JE (2000) Glucose stimulates protein modification by O-linked GlcNAc in pancreatic β cells: linkage of O-linked GlcNAc to β cell death. Proc Natl Acad Sci 97(6):2820–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27(24):8807–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Chen Y, Aponte AM, Battaglia V, Gucek M, Sack MN (2015) Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J Biol Chem 290(4):2466–2476

    Article  CAS  PubMed  Google Scholar 

  • Lupi R, Del Guerra S, Mancarella R, Novelli M, Valgimigli L, Pedulli GF, Paolini M, Soleti A, Filipponi F, Mosca F, Boggi U (2007) Insulin secretion defects of human type 2 diabetic islets are corrected in vitro by a new reactive oxygen species scavenger. Diabetes Metab 33(5):340–345

    Article  CAS  PubMed  Google Scholar 

  • Macario AJ, de Macario Conway E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    Article  CAS  PubMed  Google Scholar 

  • Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110(6):851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83(1):30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107(4):600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Latil S, Mousson L, Autret A, Colbère-Garapin F, Blondel B (2007) Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol 81(9):4457–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell GS, Philpott A (2013) Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol 45(8):1833–1842

    Article  CAS  PubMed  Google Scholar 

  • Merendino AM, Bucchieri F, Campanella C, Marcianò V, Ribbene A, David S, Zummo G, Burgio G, Corona DF, de Macario EC, Macario AJ (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5(2):e9247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzayans R, Andrais B, Hansen G, Murray D (2012) Role of in replicative senescence and DNA damage-induced premature senescence in p53-deficient human cells. Biochem Res Int 2012:951574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monzani E, Roncone R, Galliano M, Koppenol WH, Casella L (2004) Mechanistic insight into the peroxidase catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide. Eur J Biochem 271(5):895–906

    Article  CAS  PubMed  Google Scholar 

  • Moskovitz J, Oien DB (2010) Protein carbonyl and the methionine sulfoxide reductase system. Antioxid Redox Signal 12(3):405–415

    Article  CAS  PubMed  Google Scholar 

  • Nahleh Z, Tfayli A, Najm A, El Sayed A, Nahle Z (2012) Heat shock proteins in cancer: targeting the ‘chaperones’. Future Med Chem 4(7):927–935

    Article  CAS  PubMed  Google Scholar 

  • Narang MA, Dumas R, Ayer LM, Gravel RA (2004) Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum Mol Genet 13(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Cowan NJ (1998) A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell 2(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A (2015) Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci 112(19):6044–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M (2004) Lipopolysaccharide-free heat shock protein 60 activates T cells. J Biol Chem 279(46):47906–47911

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  • Pahlich S, Zakaryan RP, Gehring H (2006) Protein arginine methylation: cellular functions and methods of analysis. Biochim Biophys Acta (BBA)-Proteins Proteomics 1764(12):1890–1903

    Article  CAS  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta (BBA)-Mol Cell Res 1695(1–3):55–72

    Article  CAS  Google Scholar 

  • Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581(19):3758–3769

    Article  CAS  PubMed  Google Scholar 

  • Pyhtila B, Zheng T, Lager PJ, Keene JD, Reedy MC, Nicchitta CV (2008) Signal sequence-and translation-independent mRNA localization to the endoplasmic reticulum. RNA 14(3):445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32(2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci 101(12):4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radi R (2012) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rakonczay Z Jr, Boros I, Jarmay K, Hegyi P, Lonovics J, Takacs T (2003) Ethanol administration generates oxidative stress in the pancreas and liver, but fails to induce heat-shock proteins in rats. J Gastroenterol Hepatol 18(7):858–867

    Article  CAS  PubMed  Google Scholar 

  • Rao R, Fiskus W, Ganguly S, Kambhampati S, Bhalla KN (2012) HDAC inhibitors and chaperone function. Adv Cancer Res 116:239–262. Academic Press

    Article  CAS  PubMed  Google Scholar 

  • Rappa F, Farina F, Zummo G, David S, Campanella C, Carini F, Tomasello G, Damiani P, Cappello F, De Macario EC, Macario AJ (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32(12):5139–5150

    CAS  PubMed  Google Scholar 

  • Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci 110(16):6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raulet DH, Gasser S, Gowen BG, Deng W, Jung H (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhein VF, Carroll J, He J, Ding S, Fearnley IM, Walker JE (2014) Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J Biol Chem 289(35):24640–24651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203

    Article  CAS  PubMed  Google Scholar 

  • Roninson IB (2002) Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169(8):4098–4102

    Article  CAS  PubMed  Google Scholar 

  • Sarangi U, Singh MK, Abhijnya KVV, Reddy LPA, Prasad BS, Pitke VV, Paithankar K, Sreedhar AS (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 7:DTI-S12513

    Article  CAS  Google Scholar 

  • Schnell JD, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278(38):35857–35860

    Article  CAS  PubMed  Google Scholar 

  • Schwer B, North BJ, Frye RA, Ott M, Verdin E (2002) The human silent information regulator (Sir) 2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide–dependent deacetylase. J Cell Biol 158(4):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semba S, Mizuuchi E, Yokozaki H (2010) Requirement of phosphatase of regenerating liver-3 for the nucleolar localization of nucleolin during the progression of colorectal carcinoma. Cancer Sci 101(10):2254–2261

    Article  CAS  PubMed  Google Scholar 

  • Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 35(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280(14):13560–13567

    Article  CAS  PubMed  Google Scholar 

  • Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C (2012) Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS One 7(12):e50545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21(5):315–320

    Google Scholar 

  • Song YS, Lee BY, Hwang ES (2005) Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech Ageing Dev 126(5):580–590

    Article  CAS  PubMed  Google Scholar 

  • Spallarossa P, Altieri P, Aloi C, Garibaldi S, Barisione C, Ghigliotti G, Fugazza G, Barsotti A, Brunelli C (2009) Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2. Am J Phys Heart Circ Phys 297:H2169–H2181

    CAS  Google Scholar 

  • Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40(12):1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Straus DJ, Hamlin PA, Matasar MJ, Palomba ML, Drullinsky PR, Zelenetz AD, Gerecitano JF et al (2015) Phase I/II trial of vorinostat with rituximab, cyclophosphamide, etoposide and prednisone as palliative treatment for elderly patients with relapsed or refractory diffuse large B-cell lymphoma not eligible for autologous stem cell transplantation. Br J Haematol 168(5):663–670

    Article  CAS  PubMed  Google Scholar 

  • Suarez J, Wang H, Ouyang K, Scott B (2014) Cardiac myocyte-specific deletion of heat shock protein 10 results in altered cytosolic and mitochondrial protein expression (699.6). FASEB J 28(1_supplement):699–696

    Google Scholar 

  • Suarez-Pinzon WL, Szabó C, Rabinovitch A (1997) Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet β-cells. Diabetes 46(5):907–911

    Article  CAS  PubMed  Google Scholar 

  • Szabó C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virág L, Soriano FG, Van Duzer JH, Williams W, Salzman AL, Groves JT (2002) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8(10):571–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Tian E, Liu C, Wang Q, Deng H (2013) Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One 8(3):e59610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581

    Article  PubMed  CAS  Google Scholar 

  • Thomson L (2015) 3-nitrotyrosine modified proteins in atherosclerosis. Dis Markers 2015:708282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian P, Estes MK, Hu Y, Ball JM, Zeng CQ, Schilling WP (1995) The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol 69(9):5763–5772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasello G, Rodolico V, Zerilli M, Martorana A, Bucchieri F, Pitruzzella A, Gammazza AM, David S, Rappa F, Zummo G, Damiani P (2011) Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl Immunohistochem Mol Morphol 19(6):552–561

    Article  CAS  PubMed  Google Scholar 

  • Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S (2003) Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell 95(3–4):169–178

    Article  CAS  PubMed  Google Scholar 

  • Tsai YP, Teng SC, Wu KJ (2008) Direct regulation of HSP60 expression by c-MYC induces transformation. FEBS Lett 582(29):4083–4088

    Article  CAS  PubMed  Google Scholar 

  • Tsai YP, Yang MH, Huang CH, Chang SY, Chen PM, Liu CJ, Teng SC, Wu KJ (2009) Interaction between HSP60 and β-catenin promotes metastasis. Carcinogenesis 30(6):1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Hershman DL, Bhalla K, Fiskus W, Pellegrino CM, Andreopoulou E, Makower D, Kalinsky K, Fehn K, Fineberg S, Negassa A (2014) A phase I-II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in locally advanced breast cancer. Breast Cancer Res Treat 146(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity. Ann N Y Acad Sci 1113(1):217–237

    Article  CAS  PubMed  Google Scholar 

  • Waldhauer I, Steinle A (2006) Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66(5):2520–2526

    Article  CAS  PubMed  Google Scholar 

  • Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG, Steinle A (2008) Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68(15):6368–6376

    Article  CAS  PubMed  Google Scholar 

  • Walgren JL, Vincent TS, Schey KL, Buse MG (2003) High glucose/insulin promote O-GlcNAc modification of proteins including α-tubulin. Am J Physiol-Endocrinol Metab 284:E424–E434

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Shen Y, Song R, Sun Y, Xu J, Xu Q (2009) An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Mol Pharmacol 76(6):1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Whelan SA, Lane MD, Hart GW (2008) Regulation of the O-linked β-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 283(31):21411–21417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66(13):2109–2121

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Chikumi H, Shimizu A, Takata M, Kinoshita N, Hashimoto K, Nakamoto M, Matsunaga S, Kurai J, Miyake N, Matsumoto S (2012) Diagnostic and prognostic impact of serum-soluble UL 16-binding protein 2 in lung cancer patients. Cancer Sci 103(8):1405–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, Pandita TK, Wang HG, Bhalla KN (2013) Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci 110(17):6841–6846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yechoor VK, Patti ME, Ueki K, Laustsen PG, Saccone R, Rauniyar R, Kahn CR (2004) Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc Natl Acad Sci 101(47):16525–16530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yogev O, Pines O (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim Biophys Acta (BBA)-Biomembr 1808(3):1012–1020

    Article  CAS  Google Scholar 

  • Zambrano JL, Díaz Y, Peña F, Vizzi E, Ruiz MC, Michelangeli F, Liprandi F, Ludert JE (2008) Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J Virol 82(12):5815–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanin-Zhorov A, Bruck R, Tal G, Oren S, Aeed H, Hershkoviz R, Cohen IR, Lider O (2005) Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. J Immunol 174(6):3227–3236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byron Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baron, B. (2019). Role of the Post-translational Modifications of HSP60 in Disease. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 60 in Human Diseases and Disorders. Heat Shock Proteins, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-23154-5_6

Download citation

Publish with us

Policies and ethics