Skip to main content

Utilizing the Unique Architecture and Abilities of HSP60 in Drug Development

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 18))

Abstract

As a major active component in the maintenance of protein homeostasis, the HSP60 family of proteins have evolved numerous unique abilities that are useful in detecting, stabilizing, and facilitating the recovery of various proteins that have denatured under stress. From a technological viewpoint, many of the unique abilities of HSP60 may potentially be used to solve a variety of problems in drug development, as well as to serve as a scaffold for various applications that are relevant to the medical field. This section is an overview of recent efforts to harness the unique abilities of the HSP60 proteins in its role as a chaperonin, capable of preventing the aggregation of and stimulating the recovery of various proteins that have undergone stress-related denaturation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AD:

Apical domain

CCT:

Chaperonin containing T-complex polypeptide 1

GroEL-AD:

The isolated apical domain of GroEL

HSP:

Heat shock protein

PolyQ:

Polyglutamine

TRiC:

T-complex polypeptide 1 ring complex

References

  • Abdeen S, Salim N, Mammadova N, Summers CM, Frankson R, Ambrose AJ, Anderson GG, Schultz PG, Horwich AL, Chapman E, Johnson SM (2016a) GroEL/ES inhibitors as potential antibiotics. Bioorg Med Chem Lett 26:3127–3134

    Article  CAS  PubMed  Google Scholar 

  • Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K, McMahon-Pratt D, Schultz PG, Horwich AL, Chapman E, Johnson SM (2016b) Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorg Med Chem Lett 26:5247–5253

    Article  CAS  PubMed  Google Scholar 

  • Abdeen S, Kunkle T, Salim N, Ray AM, Mammadova N, Summers C, Stevens M, Ambrose AJ, Park Y, Schultz PG, Horwich AL, Hoang QQ, Chapman E, Johnson SM (2018) Sulfonamido-2-arylbenzoxazole GroEL/ES inhibitors as potent antibacterials against methicillin-resistant Staphylococcus aureus (MRSA). J Med Chem 61:7345–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  CAS  PubMed  Google Scholar 

  • Behrends C, Langer CA, Boteva R, Bottcher UM, Stemp MJ, Schaffar G, Rao BV, Giese A, Kretzschmar H, Siegers K, Hartl FU (2006) Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 23:887–897

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Kinbara K, Oya N, Ishii N, Taguchi H, Aida T (2009) A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin. J Am Chem Soc 131:7556–7557

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T (2013) Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat Chem 5:613–620

    Article  CAS  PubMed  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  CAS  PubMed  Google Scholar 

  • Carmichael J, Chatellier J, Woolfson A, Milstein C, Fersht AR, Rubinsztein DC (2000) Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease. Proc Natl Acad Sci U S A 97:9701–9705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael J, Vacher C, Rubinsztein DC (2002) The bacterial chaperonin GroEL requires GroES to reduce aggregation and cell death in a COS-7 cell model of Huntington’s disease. Neurosci Lett 330:270–274

    Article  CAS  PubMed  Google Scholar 

  • Chatellier J, Hill F, Lund PA, Fersht AR (1998) In vivo activities of GroEL minichaperones. Proc Natl Acad Sci U S A 95:9861–9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry C, Horwich AL, Brunger AT, Adams PD (2004) Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J Mol Biol 342:229–245

    Article  CAS  PubMed  Google Scholar 

  • Collins MO, Yu L, Campuzano I, Grant SG, Choudhary JS (2008) Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol Cell Proteomics 7:1331–1348

    Article  CAS  PubMed  Google Scholar 

  • Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138

    Article  CAS  PubMed  Google Scholar 

  • Fukui N, Araki K, Hongo K, Mizobata T, Kawata Y (2016) Modulating the effects of the bacterial chaperonin GroEL on fibrillogenic polypeptides through modification of domain hinge architecture. J Biol Chem 291:25217–25226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golbik R, Zahn R, Harding SE, Fersht AR (1998) Thermodynamic stability and folding of GroEL minichaperones. J Mol Biol 276:505–515

    Article  CAS  PubMed  Google Scholar 

  • Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41:62–76

    Article  CAS  PubMed  Google Scholar 

  • Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88:955–987

    Article  PubMed  Google Scholar 

  • Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii D, Kinbara K, Ishida Y, Ishii N, Okochi M, Yohda M, Aida T (2003) Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423:628–632

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Kobayashi R, Wakui H, Komatsuda A, Ohtani H, Miura AB, Otaka M, Masamune O, Andoh H, Koyama K, Sato Y, Tashima Y (1995) Mammalian 60-kDa stress protein (Chaperonin homolog).: identification, biochemical properties, and localization. J Biol Chem 270:13429–13435

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Sharif O, Mak PA, Wang HT, Engels IH, Brinker A, Schultz PG, Horwich AL, Chapman E (2014) A biochemical screen for GroEL/GroES inhibitors. Bioorg Med Chem Lett 24:786–789

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Kubota H, Pack CG, Matsumoto G, Hirayama S, Takahashi Y, Kimura H, Kinjo M, Morimoto RI, Nagata K (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Machida K, Fujiwara R, Tanaka T, Sakane I, Hongo K, Mizobata T, Kawata Y (2009) Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins. Biochim Biophys Acta 1794:1344–1354

    Article  CAS  PubMed  Google Scholar 

  • Mangione MR, Vilasi S, Marino C, Librizzi F, Canale C, Spigolon D, Bucchieri F, Fucarino A, Passantino R, Cappello F, Bulone D, San Biagio PL (2016) Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta 1860:2474–2483

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Li BX, Xiao X (2018) Toward developing chemical modulators of Hsp60 as potential therapeutics. Front Mol Biosci 5:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuno K, Tsujino M, Takada M, Hayashi M, Atsumi K (1974) Studies on bredinin. I. Isolation, characterization and biological properties. J Antibiot (Tokyo) 27:775–782

    Article  CAS  Google Scholar 

  • Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 97:7841–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz IG, Yebenes H, Zhou M, Mesa P, Serna M, Park AY, Bragado-Nilsson E, Beloso A, de Carcer G, Malumbres M, Robinson CV, Valpuesta JM, Montoya G (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18:14–19

    Article  CAS  PubMed  Google Scholar 

  • Nagumo Y, Kakeya H, Shoji M, Hayashi Y, Dohmae N, Osada H (2005) Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J 387:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik S, Haque I, Degner N, Kornilayev B, Bomhoff G, Hodges J, Khorassani AA, Katayama H, Morris J, Kelly J, Seed J, Fisher MT (2010) Identifying protein stabilizing ligands using GroEL. Biopolymers 93:237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik S, Kumru OS, Cullom M, Telikepalli SN, Lindboe E, Roop TL, Joshi SB, Amin D, Gao P, Middaugh CR, Volkin DB, Fisher MT (2014) Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry. Protein Sci 23:1461–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha B, Fukui N, Hongo K, Mizobata T, Kawata Y (2016) Suppression of amyloid fibrils using the GroEL apical domain. Sci Rep 6:31041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72:137–151

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pouchucq L, Lobos-Ruiz P, Araya G, Valpuesta JM, Monasterio O (2018) The chaperonin CCT promotes the formation of fibrillar aggregates of gamma-tubulin. Biochim Biophys Acta 1866:519–526

    Article  CAS  Google Scholar 

  • Sendai T, Biswas S, Aida T (2013) Photoreconfigurable supramolecular nanotube. J Am Chem Soc 135:11509–11512

    Article  CAS  PubMed  Google Scholar 

  • Shahmoradian SH, Galaz-Montoya JG, Schmid MF, Cong Y, Ma B, Spiess C, Frydman J, Ludtke SJ, Chiu W (2013) TRiC’s tricks inhibit huntingtin aggregation. elife 2:e00710

    Article  PubMed  PubMed Central  Google Scholar 

  • Sontag EM, Joachimiak LA, Tan Z, Tomlinson A, Housman DE, Glabe CG, Potkin SG, Frydman J, Thompson LM (2013) Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant huntingtin cellular phenotypes. Proc Natl Acad Sci U S A 110:3077–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sot B, Rubio-Munoz A, Leal-Quintero A, Martinez-Sabando J, Marcilla M, Roodveldt C, Valpuesta JM (2017) The chaperonin CCT inhibits assembly of alpha-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci Rep 7:40859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe M, Ishida R, Izuhara F, Komatsuda A, Wakui H, Sawada K, Otaka M, Nakamura N, Itoh H (2012) The ATPase activity of molecular chaperone HSP60 is inhibited by immunosuppressant mizoribine. Am J Mol Biol 02(02):4

    Article  CAS  Google Scholar 

  • Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walti MA, Schmidt T, Murray DT, Wang H, Hinshaw JE, Clore GM (2017) Chaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein. Proc Natl Acad Sci U S A 114:9104–9109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388:741

    Article  CAS  PubMed  Google Scholar 

  • Yebenes H, Mesa P, Munoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Du C, Sun C, Zhu J, Wu S, Zhang Y, Ji T, Lei J, Yang Y, Gao N, Nie G (2018) Chaperonin-GroEL as a smart hydrophobic drug delivery and tumor targeting molecular machine for tumor therapy. Nano Lett 18:921–928

    Article  CAS  PubMed  Google Scholar 

  • Zahn R, Buckle AM, Perrett S, Johnson CM, Corrales FJ, Golbik R, Fersht AR (1996) Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci U S A 93:15024–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang Y, Jin M, Wang H, Cui Z, Kong L, Liu C, Cong Y (2016) Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Nat Struct Mol Biol 23:1083–1091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were funded by the Strategic Research Program for Brain Sciences from Japan Agency for Medical Research and development, AMED (JP18dm0107073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohiro Mizobata or Yasushi Kawata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizobata, T., Kawata, Y. (2019). Utilizing the Unique Architecture and Abilities of HSP60 in Drug Development. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 60 in Human Diseases and Disorders. Heat Shock Proteins, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-23154-5_5

Download citation

Publish with us

Policies and ethics