Skip to main content

Automatic Differentiation in Multibody Helicopter Simulation

  • Conference paper
  • First Online:
  • 1841 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 53))

Abstract

In a first approximation, helicopters can be modeled by open-loop multibody systems (MBS). For this type of MBS the joints’ degrees of freedom provide a globally valid set of minimal states. We derive the equations of motion in these minimal coordinates and observe that one has to compute Jacobian matrices of the bodies’ kinematics with respect to the minimal states. Classically, these Jacobians are derived analytically from a complicated composition of coordinate transformations. In this paper, we will present an alternative approach, where the arising Jacobians are computed by automatic differentiation (AD). This makes the implementation of a simulation code for open-loop MBS more efficient, less error-prone, and easier to extend. To emphasize the applicability of our approach, we provide simulation results for rigid MBS helicopter models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhalerao, K.D., Poursina, M., Anderson, K.S.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23, 121–140 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bischof, C.H.: On the automatic differentiation of computer programs and an application to multibody systems. In: Bestle, D., Schielen, W. (eds.) IUTAM Symposium on Optimization of Mechanical Systems, pp. 41–48. Springer (1996)

    Google Scholar 

  3. Callejo, A., Dopico, D.: Direct sensitivity analysis of multibody systems: a vehicle dynamics benchmark. J. Comput. Nonlinear Dynam. 14, 021004 (2019)

    Article  Google Scholar 

  4. Callejo, A., Narayanan, S.H.K., Garcia de Jalon, J., Norris, B.: Performance of automatic differentiation tools in the dynamic simulation of multibody systems. Adv. Eng. Software 73, 35–44 (2014)

    Article  Google Scholar 

  5. Eberhard, P., Bischof, C.: Automatic differentiation of numerical integration algorithms. Math. Comp. 68, 717–731 (1999)

    Article  MathSciNet  Google Scholar 

  6. Griffith, D.T., Turner, J.D., Junkins, J.L.: Some applications of automatic differentiation to rigid, flexible, and constrained multibody dynamics. In: Proceedings of IDETC/CIE 2005. ASME (2005)

    Google Scholar 

  7. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

  8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Johnson, W.: Rotorcraft Aeromechanics. Cambridge Aerospace Series. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  10. Naumann, U.: The Art of Differentiating Computer Programs. SIAM, Philadelphia (2012)

    MATH  Google Scholar 

  11. Schwertassek, R., Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Vieweg (1999)

    Google Scholar 

  12. Serban, R., Haug, E.J.: Kinematic and kinetic derivatives in multibody systems. Mech. Struct. Mach. 26, 145–173 (1998)

    Article  Google Scholar 

  13. Simeon, B.: Computational Flexible Multibody Dynamics. Springer, Heidelberg (2013)

    Book  Google Scholar 

  14. van der Wall, B.G.: Grundlagen der Hubschrauber-Aerodynamik. Springer Vieweg (2015)

    Google Scholar 

  15. van der Wall, B.G.: Grundlagen der Dynamik von Hubschrauber-Rotoren. Springer Vieweg (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Kontak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kontak, M., Röhrig-Zöllner, M., Hofmann, J., Weiß, F. (2020). Automatic Differentiation in Multibody Helicopter Simulation. In: Kecskeméthy, A., Geu Flores, F. (eds) Multibody Dynamics 2019. ECCOMAS 2019. Computational Methods in Applied Sciences, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-23132-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23132-3_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23131-6

  • Online ISBN: 978-3-030-23132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics