Skip to main content

The Discrete Hamiltonian-Based Adjoint Method for Some Optimization Problems in Multibody Dynamics

  • Conference paper
  • First Online:
Multibody Dynamics 2019 (ECCOMAS 2019)

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 53))

Abstract

The determination of various parameters or control input signals satisfying particular performance criteria is often addressed with optimization techniques where one aims at minimizing certain quantity, which may be implicitly dependent on the dynamic response of a system. Such an approach requires an efficient and reliable method of gradient calculation. The adjoint method is an effective procedure specifically designed for such calculations. This paper presents a discrete Hamiltonian–based adjoint method which allows one to find the gradient of the performance index in multibody systems’ optimization. Hamilton’s equations of motion are discretized by means of trapezoidal rule and incorporated into a discrete system of adjoint equations. Explicit formula for the gradient of the cost functional is derived and exploited in an exemplary optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S.K., Fabien, B.C.: Optimization of Dynamic Systems, vol. 70. Springer, Dordrecht (2013)

    MATH  Google Scholar 

  2. Bestle, D., Eberhard, P.: Analyzing and optimizing multibody systems. Mech. Struct. Mach. 20, 67–92 (1992)

    Article  Google Scholar 

  3. Callejo, A., Sonneville, V., Bauchau, O.A.: Discrete adjoint method for the sensitivity analysis of flexible multibody systems. J. Comput. Nonlinear Dyn. 14(2), 021001 (2019)

    Article  Google Scholar 

  4. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24(3), 1076–1089 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chadaj, K., Malczyk, P., Frączek, J.: A parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systems. Multibody Syst. Dyn. 39(1) (2017). https://doi.org/10.1007/s11044-016-9531-x

    Article  MathSciNet  Google Scholar 

  6. Chadaj, K., Malczyk, P., Frączek, J.: A parallel recursive Hamiltonian algorithm for forward dynamics of serial kinematic chains. IEEE Trans. Robot. 33(3), 647–660 (2017). https://doi.org/10.1109/TRO.2017.2654507

    Article  Google Scholar 

  7. Lauß, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint gradient computation for optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 12(3), 031016 (2017)

    Article  Google Scholar 

  8. Maciąg, P., Malczyk, P., Frączek, J.: Optimal design of multibody systems using the adjoint method. In: Dynamical Systems Theory and Applications, pp. 241–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-96601-4_22

    Chapter  Google Scholar 

  9. Nachbagauer, K., Oberpeilsteiner, S., Sherif, K., Steiner, W.: The use of the adjoint method for solving typical optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 10(6) (2015). https://doi.org/10.1115/1.4028417

    Article  Google Scholar 

  10. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Science Center under grant No. 2018/29/B/ST8/00374. The first author would also like to acknowledge the support of the Institute of Aeronautics and Applied Mechanics funds for scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Maciąg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maciąg, P., Malczyk, P., Frączek, J. (2020). The Discrete Hamiltonian-Based Adjoint Method for Some Optimization Problems in Multibody Dynamics. In: Kecskeméthy, A., Geu Flores, F. (eds) Multibody Dynamics 2019. ECCOMAS 2019. Computational Methods in Applied Sciences, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-23132-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23132-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23131-6

  • Online ISBN: 978-3-030-23132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics