Skip to main content

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 33))

  • 429 Accesses

Abstract

In this paper, it is discussed how physiological systems can be regulated by using the control theory as well as methodologies of system analysis, modeling, and identification. In physiology, the natural tendency to homeostasis, despite changes in the environments, implies a feedback-control scheme. The study of the natural regulation in physiological systems could help in its replacing when pathological situations are present. The basic concepts of homeostasis, modeling and control are here recalled, and some case studies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreaus U, Colloca M, Iacoviello D (2012) An optimal control procedure for bone adaptation under mechanical stimuli. Control Eng Pract 20(6):575–583

    Article  Google Scholar 

  2. Andreaus U, Colloca M, Iacoviello D, Pignataro M (2011) Optimal-tuning PID control of adaptive materials for structural efficiency. Struct Multidiscip Optim 43(1):43–59

    Article  Google Scholar 

  3. Beck CL (2015) Modeling and control of pharmacodynamics. Eur J Control 24:33–49

    Article  Google Scholar 

  4. Behncke H (2000) Optimal control of deterministic epidemics. Optim Control Appl Methods 21:269–285

    Article  Google Scholar 

  5. Campioni I, Notarangelo G, Andreaus U, Ventura A, Giacomozzi C (2012) Hipprostheses computational modeling: FEM simulations integrated with fatigue mechanics tests. Lect Notes Comput Vis Biomech 4:81–108

    Article  Google Scholar 

  6. Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431

    Article  Google Scholar 

  7. Carley DW, Shannon DC (1988) A minimal mathematical model of human periodic breathing. J Appl Physiol 65:1400–1409

    Article  CAS  Google Scholar 

  8. Carson E, Cobelli C (2014) Modeling methodology for physiology and medicine, Elsevier

    Google Scholar 

  9. Chaburn RL, Mireles Cabodevila E (2011) Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care 56(1):85–102

    Article  Google Scholar 

  10. Chang H, Astolfi A (2009) Control of HIV infection dynamics. IEEE Control Syst 28–39

    Google Scholar 

  11. Cobelli C, Dalla Man C, Sparacino G, Magni L, De Nicolao G, Kovatchev BP (2009) Diabetes: models, signals, and control. IEEE Rev Biomed Eng 2:54–96

    Article  Google Scholar 

  12. Cosentino C, Bates D (2012) Feedback control in systems biology. Taylor & Francis

    Google Scholar 

  13. Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6:3

    Article  Google Scholar 

  14. Das S, Caragea D, Welch SM, Hsu WH (2010) Computational methodologies in gene regulatory networks. Medical Information Science Reference

    Google Scholar 

  15. De Nicolao G, Magni L, Dalla Man C, Cobelli C (2011) Modeling and control of diabetes: towards the artificial pancreas. IFAC Proc Vol 44(1):7092–7101

    Article  Google Scholar 

  16. De Santis A, Iacoviello D (2006) Optimal segmentation of pupillometric images for estimating pupil shape parameters. Comput Methods Programs Biomed 84:174–187

    Article  Google Scholar 

  17. De Santis A, Iacoviello D (2009) Robust eye tracking for computer interface for disabled people. Comput Methods Programs Biomed 96(1):1–11

    Article  Google Scholar 

  18. Di Giamberardino P, Iacoviello D (2017) Optimal control of SIR epidemic model with state dependent switching cost index. Biomed Signal Process Control 31:377–380

    Article  Google Scholar 

  19. Di Giamberardino P, Compagnucci L, De Giorgi C, Iacoviello D (2018) Modeling the effects of prevention and early diagnosis on HIV/AIDS infection diffusion. IEEE Trans Syst, Man Cybern Syst

    Google Scholar 

  20. Di Giamberardino P, Iacoviello D (2018) HIV infection control: a constructive algorithm for a state-based switching control. Int J Control, Autom Syst 1–5

    Google Scholar 

  21. Di Giamberardino P, Iacoviello D (2018) LQ control design for the containment of the HIV/AIDS diffusion. Control Eng Pract 77:162–173

    Article  Google Scholar 

  22. Doyle FJ, Huyett LM, Lee JB, Zisser HC, Dassau E (2014) Closed loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5):1191–1197

    Article  Google Scholar 

  23. Fister KR, Panetta JC (2003) Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J Appl Math 63(6):1954–1971

    Article  Google Scholar 

  24. Giorgio I, Andreaus U, Madeo A (2016) The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Contin Mech Thermodyn 28(1–2):21–40

    Article  CAS  Google Scholar 

  25. Glass L, Beuter A, Larocque D (1988) Time delays, Oscillations, and Chaos in physiological control systems. Math Biosci 90:111–125

    Article  Google Scholar 

  26. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Willinska ME (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25:905–920

    Article  Google Scholar 

  27. Huang C-N, Chung H-Y (2014) Applications of control theory in biomedical engineering. National Central University, Chungli Taiwan

    Google Scholar 

  28. Iacoviello D, Lucchetti M (2005) Parametric characterization of the form of the human pupil from blurred noisy images. Comput Methods Programs Biomed 77(1):39–48

    Article  Google Scholar 

  29. Iacoviello D, Stasio N (2013) Optimal control for SIRC epidemic outbreak. Comput Methods Programs Biomed 110(3):333–342

    Article  Google Scholar 

  30. Incremona GP, Messori M, Toffanin C, Cobelli C, Magni L (2018) Model predictive control with integral action for artificial pancreas. Control Eng Pract 77:86–94

    Article  Google Scholar 

  31. Khoo MCK (2002) Physiological control systems. IEEE press series on biomedical engineering

    Google Scholar 

  32. Landi A, Laurini M, Piaggi P (2011) Physiological cybernetics: an old-novel approach for students in biomedical systems pp 48–62, Biomedical engineering–from theory to applications. www.intechopen.com

  33. Ledzewicz U, Schättler H (2005) The influence of PK/PD on the structure of optimal control in cancer chemotherapy models. Math Biosci Eng 2(3):561–578

    Article  Google Scholar 

  34. Naresh R, Tripathi A, Sharma D (2009) Modeling and analysis of the spread of AIDS epidemic with immigration of HIV infectives. Math Comput Model 49:880–892

    Article  Google Scholar 

  35. Nowzari C, Preciado VM, Pappas GJ (2016) Analysis and control of epidemics. IEEE Control Syst Mag 36:26–46

    Google Scholar 

  36. Nugent ST, Finley JP (1987) Periodic breathing in infants: a model study. IEEE Trans Biomed Eng 34:482–485

    Article  CAS  Google Scholar 

  37. Placidi G, Avola D, Iacoviello D, Cinque L (2013) Overall design and implementation of the virtual glove. Comput Biol Med 43(11):1927–1940

    Article  Google Scholar 

  38. Placidi G, Avola D, Ferrari M, Iacoviello D, Petracca A, Quaresima V, Spezialetti M (2014) A low-cost real time virtual system for postural stability assessment at home. Comput Methods Programs Biomed 117(2):322–333

    Article  Google Scholar 

  39. Soylu S, Danisman K (2016) Comparison of PID based control algorithms for daily blood glucose control. In: Proceedings of the 2nd world congress on electrical engineering and computer systems and science. pp 1–8

    Google Scholar 

  40. Stolwijk JE, Hardy JD (1974) Regulation and control in physiology. In: Medical physiology. pp 1343–1358

    Google Scholar 

  41. Swan GW (1984) Applications of optimal control theory in biomedicine. In: Dekker M (ed) New York

    Google Scholar 

  42. Stark L (1959) Stability, oscillations, and noise in the human pupil servomechanism. Proc IRE 47:1925–1939

    Article  Google Scholar 

  43. Tovar A, Patel NM, Niebur GL, Sen M, Renaud JE (2006) Topology optimization using hybrid cellular automation method with local control rules. J Mech Des 128(6):1205–1216

    Article  Google Scholar 

  44. Wang S, Schattler H (2016) Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Math Biosci Eng 13(6):1223–1240

    Article  Google Scholar 

  45. Warner A, Mittag J (2012) Thyroid hormone and the central control of homeostasis. J Mol Endocrinol 49:29–35

    Article  Google Scholar 

  46. Wiener N (1948) Cybernetics, or control and communication in the animal and the machine. The MIT Press, Cambridge (MA)

    Google Scholar 

  47. Wu D, Zhang H, Cao J, Hayat T (2013) Stability and bifurcation analysis of a nonlinear discrete logistic model with delay. Discret Dyn Nat Soc 2013:1–7

    Google Scholar 

  48. Wodarz D, Nowak M (1999) Specific therapy regimes could lead to long-term immunological control of HIV. Proc Nat Acad Sci 96(25):14464–14469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Iacoviello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iacoviello, D. (2019). Physiological Cybernetics: Methods and Applications. In: Tavares, J., Fernandes, P. (eds) New Developments on Computational Methods and Imaging in Biomechanics and Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-23073-9_9

Download citation

Publish with us

Policies and ethics