Physiological Cybernetics: Methods and Applications

  • Daniela IacovielloEmail author
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 33)


In this paper, it is discussed how physiological systems can be regulated by using the control theory as well as methodologies of system analysis, modeling, and identification. In physiology, the natural tendency to homeostasis, despite changes in the environments, implies a feedback-control scheme. The study of the natural regulation in physiological systems could help in its replacing when pathological situations are present. The basic concepts of homeostasis, modeling and control are here recalled, and some case studies are described.


  1. 1.
    Andreaus U, Colloca M, Iacoviello D (2012) An optimal control procedure for bone adaptation under mechanical stimuli. Control Eng Pract 20(6):575–583CrossRefGoogle Scholar
  2. 2.
    Andreaus U, Colloca M, Iacoviello D, Pignataro M (2011) Optimal-tuning PID control of adaptive materials for structural efficiency. Struct Multidiscip Optim 43(1):43–59CrossRefGoogle Scholar
  3. 3.
    Beck CL (2015) Modeling and control of pharmacodynamics. Eur J Control 24:33–49CrossRefGoogle Scholar
  4. 4.
    Behncke H (2000) Optimal control of deterministic epidemics. Optim Control Appl Methods 21:269–285CrossRefGoogle Scholar
  5. 5.
    Campioni I, Notarangelo G, Andreaus U, Ventura A, Giacomozzi C (2012) Hipprostheses computational modeling: FEM simulations integrated with fatigue mechanics tests. Lect Notes Comput Vis Biomech 4:81–108CrossRefGoogle Scholar
  6. 6.
    Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431CrossRefGoogle Scholar
  7. 7.
    Carley DW, Shannon DC (1988) A minimal mathematical model of human periodic breathing. J Appl Physiol 65:1400–1409CrossRefGoogle Scholar
  8. 8.
    Carson E, Cobelli C (2014) Modeling methodology for physiology and medicine, ElsevierGoogle Scholar
  9. 9.
    Chaburn RL, Mireles Cabodevila E (2011) Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care 56(1):85–102CrossRefGoogle Scholar
  10. 10.
    Chang H, Astolfi A (2009) Control of HIV infection dynamics. IEEE Control Syst 28–39Google Scholar
  11. 11.
    Cobelli C, Dalla Man C, Sparacino G, Magni L, De Nicolao G, Kovatchev BP (2009) Diabetes: models, signals, and control. IEEE Rev Biomed Eng 2:54–96CrossRefGoogle Scholar
  12. 12.
    Cosentino C, Bates D (2012) Feedback control in systems biology. Taylor & FrancisGoogle Scholar
  13. 13.
    Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6:3CrossRefGoogle Scholar
  14. 14.
    Das S, Caragea D, Welch SM, Hsu WH (2010) Computational methodologies in gene regulatory networks. Medical Information Science ReferenceGoogle Scholar
  15. 15.
    De Nicolao G, Magni L, Dalla Man C, Cobelli C (2011) Modeling and control of diabetes: towards the artificial pancreas. IFAC Proc Vol 44(1):7092–7101CrossRefGoogle Scholar
  16. 16.
    De Santis A, Iacoviello D (2006) Optimal segmentation of pupillometric images for estimating pupil shape parameters. Comput Methods Programs Biomed 84:174–187CrossRefGoogle Scholar
  17. 17.
    De Santis A, Iacoviello D (2009) Robust eye tracking for computer interface for disabled people. Comput Methods Programs Biomed 96(1):1–11CrossRefGoogle Scholar
  18. 18.
    Di Giamberardino P, Iacoviello D (2017) Optimal control of SIR epidemic model with state dependent switching cost index. Biomed Signal Process Control 31:377–380CrossRefGoogle Scholar
  19. 19.
    Di Giamberardino P, Compagnucci L, De Giorgi C, Iacoviello D (2018) Modeling the effects of prevention and early diagnosis on HIV/AIDS infection diffusion. IEEE Trans Syst, Man Cybern SystGoogle Scholar
  20. 20.
    Di Giamberardino P, Iacoviello D (2018) HIV infection control: a constructive algorithm for a state-based switching control. Int J Control, Autom Syst 1–5Google Scholar
  21. 21.
    Di Giamberardino P, Iacoviello D (2018) LQ control design for the containment of the HIV/AIDS diffusion. Control Eng Pract 77:162–173CrossRefGoogle Scholar
  22. 22.
    Doyle FJ, Huyett LM, Lee JB, Zisser HC, Dassau E (2014) Closed loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5):1191–1197CrossRefGoogle Scholar
  23. 23.
    Fister KR, Panetta JC (2003) Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J Appl Math 63(6):1954–1971CrossRefGoogle Scholar
  24. 24.
    Giorgio I, Andreaus U, Madeo A (2016) The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Contin Mech Thermodyn 28(1–2):21–40CrossRefGoogle Scholar
  25. 25.
    Glass L, Beuter A, Larocque D (1988) Time delays, Oscillations, and Chaos in physiological control systems. Math Biosci 90:111–125CrossRefGoogle Scholar
  26. 26.
    Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Willinska ME (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25:905–920CrossRefGoogle Scholar
  27. 27.
    Huang C-N, Chung H-Y (2014) Applications of control theory in biomedical engineering. National Central University, Chungli TaiwanGoogle Scholar
  28. 28.
    Iacoviello D, Lucchetti M (2005) Parametric characterization of the form of the human pupil from blurred noisy images. Comput Methods Programs Biomed 77(1):39–48CrossRefGoogle Scholar
  29. 29.
    Iacoviello D, Stasio N (2013) Optimal control for SIRC epidemic outbreak. Comput Methods Programs Biomed 110(3):333–342CrossRefGoogle Scholar
  30. 30.
    Incremona GP, Messori M, Toffanin C, Cobelli C, Magni L (2018) Model predictive control with integral action for artificial pancreas. Control Eng Pract 77:86–94CrossRefGoogle Scholar
  31. 31.
    Khoo MCK (2002) Physiological control systems. IEEE press series on biomedical engineeringGoogle Scholar
  32. 32.
    Landi A, Laurini M, Piaggi P (2011) Physiological cybernetics: an old-novel approach for students in biomedical systems pp 48–62, Biomedical engineering–from theory to applications.
  33. 33.
    Ledzewicz U, Schättler H (2005) The influence of PK/PD on the structure of optimal control in cancer chemotherapy models. Math Biosci Eng 2(3):561–578CrossRefGoogle Scholar
  34. 34.
    Naresh R, Tripathi A, Sharma D (2009) Modeling and analysis of the spread of AIDS epidemic with immigration of HIV infectives. Math Comput Model 49:880–892CrossRefGoogle Scholar
  35. 35.
    Nowzari C, Preciado VM, Pappas GJ (2016) Analysis and control of epidemics. IEEE Control Syst Mag 36:26–46Google Scholar
  36. 36.
    Nugent ST, Finley JP (1987) Periodic breathing in infants: a model study. IEEE Trans Biomed Eng 34:482–485CrossRefGoogle Scholar
  37. 37.
    Placidi G, Avola D, Iacoviello D, Cinque L (2013) Overall design and implementation of the virtual glove. Comput Biol Med 43(11):1927–1940CrossRefGoogle Scholar
  38. 38.
    Placidi G, Avola D, Ferrari M, Iacoviello D, Petracca A, Quaresima V, Spezialetti M (2014) A low-cost real time virtual system for postural stability assessment at home. Comput Methods Programs Biomed 117(2):322–333CrossRefGoogle Scholar
  39. 39.
    Soylu S, Danisman K (2016) Comparison of PID based control algorithms for daily blood glucose control. In: Proceedings of the 2nd world congress on electrical engineering and computer systems and science. pp 1–8Google Scholar
  40. 40.
    Stolwijk JE, Hardy JD (1974) Regulation and control in physiology. In: Medical physiology. pp 1343–1358Google Scholar
  41. 41.
    Swan GW (1984) Applications of optimal control theory in biomedicine. In: Dekker M (ed) New YorkGoogle Scholar
  42. 42.
    Stark L (1959) Stability, oscillations, and noise in the human pupil servomechanism. Proc IRE 47:1925–1939CrossRefGoogle Scholar
  43. 43.
    Tovar A, Patel NM, Niebur GL, Sen M, Renaud JE (2006) Topology optimization using hybrid cellular automation method with local control rules. J Mech Des 128(6):1205–1216CrossRefGoogle Scholar
  44. 44.
    Wang S, Schattler H (2016) Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Math Biosci Eng 13(6):1223–1240CrossRefGoogle Scholar
  45. 45.
    Warner A, Mittag J (2012) Thyroid hormone and the central control of homeostasis. J Mol Endocrinol 49:29–35CrossRefGoogle Scholar
  46. 46.
    Wiener N (1948) Cybernetics, or control and communication in the animal and the machine. The MIT Press, Cambridge (MA)Google Scholar
  47. 47.
    Wu D, Zhang H, Cao J, Hayat T (2013) Stability and bifurcation analysis of a nonlinear discrete logistic model with delay. Discret Dyn Nat Soc 2013:1–7Google Scholar
  48. 48.
    Wodarz D, Nowak M (1999) Specific therapy regimes could lead to long-term immunological control of HIV. Proc Nat Acad Sci 96(25):14464–14469CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer, Control and Management Engineering Antonio RubertiSapienza University of RomeRomeItaly

Personalised recommendations