Prediction of Stress and Strain Patterns from Load Rearrangement in Human Osteoarthritic Femur Head: Finite Element Study with the Integration of Muscular Forces and Friction Contact

  • Fabiano BiniEmail author
  • Andrada Pica
  • Andrea Marinozzi
  • Franco Marinozzi
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 999)


Osteoarthritis (OA) is a degenerative disease that alters the integrity of the joint. Osteophytes represent abnormal osteocartilaginous outgrowths associated with the evolution of OA. Finite element (FE) analysis was performed on an 3D model of the proximal half of human femur to determine the relevance of osteophytes on the stress and strain distributions within the femur head. We assume that the model includes three linearly elastic, homogeneous and isotropic media representing the articular cartilage, the cortical and trabecular bone. With the aim of a more accurate representation of the physiological conditions, we consider in the FE model the influence of the muscle forces that span the hip joint. We also assume a friction contact between the cartilage layer and the cortical tissue. Simulations were carried out for a healthy and three different stages of OA femur. Different load distributions are considered for the four models due to the alterations of bone structure. The patterns of stress and strain within the trabecular tissue suggest that osteophytes manifestation could justify the development of bone cysts (geodes) and the formation of highly mineralized tissue (eburnation). The FE approach presented in this work could result useful in predicting bone behaviour towards abnormal mechanical solicitations.


  1. 1.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656PubMedPubMedCentralGoogle Scholar
  2. 2.
    Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH (2013) Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 15:223CrossRefGoogle Scholar
  3. 3.
    Cox LGE, Van Rietbergen B, Van Donkelaar CC, Ito K (2011) Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach. Osteoarthr Cartil 19(6):676–682CrossRefGoogle Scholar
  4. 4.
    Goldrin SR (2012) Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 4(4):249–258CrossRefGoogle Scholar
  5. 5.
    Jeffery AK (1975) Osteophytes and the osteoarthritic femoral head. J Bone Jt Surg Br 57(3):314–324CrossRefGoogle Scholar
  6. 6.
    Turmezei TD, Poole KES (2011) Computed tomography of subchondral bone and osteophytes in hip osteoarthritis: the shape of things to come?. Front Endocrinol 2, Article 97Google Scholar
  7. 7.
    Turmezei TD, Lomas DJ, Hopper MA, Poole KES (2014) Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography. Osteoarthr Cartil 22(10):1488–1498CrossRefGoogle Scholar
  8. 8.
    Olstza MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mat Sci Eng R 58:77–116CrossRefGoogle Scholar
  9. 9.
    Davidson ENB, Vitters EL, Van Beuningen HM, Van De Loo FAJ, Van Den Berg WB, Van Der Kraan PM (2007) Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor β-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum 56(12):4065–4073CrossRefGoogle Scholar
  10. 10.
    Marinozzi F, Bini F, De Paolis A, De Luca R, Marinozzi A (2015) Effects of hip osteoarthritis on mechanical stimulation of trabecular bone: a finite element study. J Med Biol Eng 35(4):535–544CrossRefGoogle Scholar
  11. 11.
    Marinozzi F, Bini F, De Paolis A, Zuppante F, Bedini R, Marinozzi A (2015) A finite element analysis of altered load distribution within femoral head in osteoarthritis. Comput Methods Biomech Biomed Eng Imaging Vis 3(2):84–90Google Scholar
  12. 12.
    Landells JW (1953) The bone cysts of osteoarthritis. J Bone Joint Surg 35B(4):643–649CrossRefGoogle Scholar
  13. 13.
    Resnick D, Niwayama G, Coutts RD (1977) Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. Am J Roentgenol 128(5):799–806CrossRefGoogle Scholar
  14. 14.
    Bini F, Pica A, Marinozzi A, Marinozzi F (2018) Prediction of osteophytes relevance in human osteoarthritic femur head from load pattern rearrangement simulations: an integrated fem study. In: Proceedings of the 15th international symposium on computer methods in biomechanics and biomedical engineering and 3rd conference on imaging and visualization CMBBEGoogle Scholar
  15. 15.
    Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31(9):841–846CrossRefGoogle Scholar
  16. 16.
    Stolk J, Verdonschot N, Huiskes R (2001) Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech 34(7):917–926CrossRefGoogle Scholar
  17. 17.
    Marinozzi F, Marinozzi A, Bini F, Zuppante F, Pecci R, Bedini R (2012) Variability of morphometric parameters of human trabecular tissue from coxo-arthritis and osteoporotic samples. Ann I Super Sanità 48(1):19–25Google Scholar
  18. 18.
    Marinozzi F, Bini F, Marinozzi A, Zuppante F, De Paolis A, Pecci R, Bedini R (2013) Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms. Ann I Super Sanità 49(3):300–305Google Scholar
  19. 19.
    van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthr Cartil 15(3):237–244CrossRefGoogle Scholar
  20. 20.
    Bini F, Marinozzi A, Marinozzi F, Patanè F (2002) Microtensile measurements of single trabeculae stiffness in human femur. J Biomech 35(11):1515–1519CrossRefGoogle Scholar
  21. 21.
    Marinozzi F, Bini F, Marinozzi A (2011) Evidence of entropic elasticity of human bone trabeculae at low strains. J Biomech 44(5):988–991CrossRefGoogle Scholar
  22. 22.
    Bini G, Bini F, Bedini R, Marinozzi A, Marinozzi F (2017) A topological look at human trabecular bone tissue. Math Biosci 288:159–165CrossRefGoogle Scholar
  23. 23.
    Pustoc’h A, Cheze L (2009) Normal and osteoarthritic hip joint mechanical behaviour: a comparison study. Med Biol Eng Comput 47(4):375–383CrossRefGoogle Scholar
  24. 24.
    Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238CrossRefGoogle Scholar
  25. 25.
    Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Min Res 18:1781–1788CrossRefGoogle Scholar
  26. 26.
    Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42(1):30–35CrossRefGoogle Scholar
  27. 27.
    Marinozzi F, De Paolis A, De Luca R, Bini F, Bedini R, Marinozzi A (2012) Stress and strain patterns in normal and osteoarthritic femur using finite element analysis. In: Proceedings of compimage-computational modelling of objects represented in images iii: fundamentals, methods and applications, pp 247–250Google Scholar
  28. 28.
    Richard F, Villars M, Thibaud S (2013) Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. J Mech Behav Biomed Mater 24:41–52CrossRefGoogle Scholar
  29. 29.
    Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of insitu intrinsic mechanical-properties of distal femoral cartilage. J Orthop Res 9(3):330–340CrossRefGoogle Scholar
  30. 30.
    Miyasaka D, Ito T, Imai N, Suda K, Minato I, Dohmae Y, Endo N (2014) Three-dimensional assessment of femoral head coverage in normal and dysplastic hips: a novel method. Acta Med Okayama 68(5):277–284PubMedGoogle Scholar
  31. 31.
    Miller Z, Fuchs MB, Arcan M (2002) Trabecular bone adaptation with an orthotropic material model. J Biomech 35(2):247–256CrossRefGoogle Scholar
  32. 32.
    Genda E, Konishi N, Hasegawa Y, Miura T (1995) A computer simulation study of normal and abnormal hip joint contact pressure. Arch Orthop Trauma Surg 114(4):202–206CrossRefGoogle Scholar
  33. 33.
    Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871CrossRefGoogle Scholar
  34. 34.
    Brinckmann P, Frobin W, Hierholzer E (1981) Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint. J Biomech 14(3):149–156CrossRefGoogle Scholar
  35. 35.
    Bachtar F, Chen X, Hisad T (2006) Finite element contact analysis of the hip joint. Med Biol Eng Comput 44(8):643–651CrossRefGoogle Scholar
  36. 36.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. 37.
    Greenwald AS, O’Connor JJ (1971) The transmission of load through the human hip joint. J Biomech 4(6):507–528CrossRefGoogle Scholar
  38. 38.
    Naghieh GR, Jin ZM, Rahnejat H (1998) Contact characteristics of viscoelastic bonded layers. Appl Math Model 22(8):569–581CrossRefGoogle Scholar
  39. 39.
    Fang X, Zhang C, Chen X, Wang Y, Tan Y (2015) A new universal approximate model for conformal contact and non-conformal contact of spherical surfaces. Acta Mech 226(6):1657–1672CrossRefGoogle Scholar
  40. 40.
    Pompe B, Daniel M, Sochor M, Vengust R, Kralj-Iglič V, Iglič A (2003) Gradient of contact stress in normal and dysplastic human hips. Med Eng Phys 25(5):379–385CrossRefGoogle Scholar
  41. 41.
    Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38(5):1155–1163CrossRefGoogle Scholar
  42. 42.
    Venäläinen MS, Mononen ME, Salo J, Räsänen LP, Jurvelin JS, Toyräs J, Viren T, Korhonen RK (2016) Quantitative evaluation of the mechanical risks caused by focal cartilage defects in the knee. Sci Rep 6:1–11CrossRefGoogle Scholar
  43. 43.
    Banijamali SMA, Oftadeh R, Nazarian A, Goebel R, Vaziri A, Nayeb-Hashemi H (2015) Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling. J Biomech Eng 137(1):011011-1-8Google Scholar
  44. 44.
    Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech 19(8):589–596CrossRefGoogle Scholar
  45. 45.
    Lizhang J, Fisher J, Jin Z, Burton A, Williams S (2011) The effect of contact stress on cartilage friction, deformation and wear. Proc Inst Mech Eng Part H J Eng Med 225(5):461–475CrossRefGoogle Scholar
  46. 46.
    Ateshian GA, Henak CR, Weiss JA (2015) Toward patient-specific articular contact mechanics. J Biomech 48(5):779–786CrossRefGoogle Scholar
  47. 47.
    Malekipour F, Oetomo D, Lee PVS (2017) Subchondral bone microarchitecture and failure mechanism under compression: a finite element study. J Biomech 55:85–91CrossRefGoogle Scholar
  48. 48.
    Turmezei TD, Treece GM, Gee AH, Fotiadou AF, Poole KES (2016) Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography. Eur Radiol 26(7):2047–2054CrossRefGoogle Scholar
  49. 49.
    Bini F, Pica A, Marinozzi A, Marinozzi F (2017) 3D diffusion model within the collagen apatite porosity: an insight to the nanostructure of human trabecular bone. PLoS One 12(12)CrossRefGoogle Scholar
  50. 50.
    Araneo R, Rinaldi A, Notargiacomo A, Bini F, Pea M, Celozzi S, Marinozzi F, Lovat G () Design concepts, fabrication and advanced characterization methods of innovative piezoelectric sensors based on ZnO nanowires. Sensors 14(12):23539–23562CrossRefGoogle Scholar
  51. 51.
    Araneo R, Rinaldi A, Notargiacomo A, Bini F, Marinozzi F, Pea M, Lovat G, Celozzi S (2014) Effect of the scaling of the mechanical properties on the performances of ZnO piezo-semiconductive nanowires. In: AIP conference proceedings, vol 1603, pp 14–22Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fabiano Bini
    • 1
    Email author
  • Andrada Pica
    • 1
  • Andrea Marinozzi
    • 2
  • Franco Marinozzi
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
  2. 2.Orthopedy and Traumatology AreaCampus Bio-Medico UniversityRomeItaly

Personalised recommendations