Skip to main content

Fretting Fatigue Fracture

  • Chapter
  • First Online:
  • 296 Accesses

Part of the book series: Structural Integrity ((STIN,volume 9))

Abstract

This chapter deals with the investigation of contact interaction of two bodies under the conditions of fretting fatigue. We study the fracture processes in the material (and construct the paths of crack propagation) in the zone of cyclic contact of two bodies under the conditions of fretting fatigue, in particular, depending on the friction coefficient and stick/slip conditions between the bodies, the form of the base of counterbody (the type of modeling contact loading), etc. We also present some examples of evaluation of the residual service life for turbine blades of the GTE (gas-turbine engine) made of TS-5 (TC-5) titanium alloy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aleksandrov VM, Romalis BL (1986) Kontaktnyye zadachi v mashinostroyenii (Contact Problems in Mechanical Engineering). Mashinostroenie, Moscow

    Google Scholar 

  2. Balatskii LT (1972) Ustalost’ valov v soedineniyakh (Fatigue of Shafts in Joints). Tekhnika, Kiev

    Google Scholar 

  3. Balatskii LT (1982) Prochnost’ pressovykh soedineniy (Strength of Pressed Joints). Tekhnika, Kiev

    Google Scholar 

  4. Botvina LR, Yarema SYa, Grechko VV, Lymar’LV (1982) Kinetics of fatigue fracture of VT3-1 titanium alloy. Sov Mater Sci 17(6):518–524

    Article  Google Scholar 

  5. Cattaneo C (1938) Sur contatto di due corpi elatici: distribuzione locate degli sforzi. Rend. dell ‘Academia nazionale dei lincei 27(Ser. 6):342, 434, 474

    Google Scholar 

  6. Ciavarella M, Demelio G (2001) A review of analytical aspects of fretting fatigue, with extension to damage parameters, and application to dovetail joints. Int J Solids Struct 38(10–13):1791–1811

    Article  MATH  Google Scholar 

  7. Collins JA (1981) Failure of materials in mechanical design. Wiley, New York

    Google Scholar 

  8. Datsishin OP, Marchenko GP (1991) Edge-crack growth. Sov Mater Sci 27(5):465–471

    Article  Google Scholar 

  9. Datsyshyn OP (1999) Durability and fracture calculate model for structural materials under fretting fatigue. Naukovyy Visnyk Ukrauinskogo Derzhavnogo Lisotekhnichnogo Universytetu, Issue 9:139–149

    Google Scholar 

  10. Datsyshyn OP (1996) Fracture and wear processes simulating under cyclic contact of solid bodies. In: Petit J (ed) ECF-11, vol II. Mechanism and mechanics of damage and failure. EMAS LTD, Warley, pp 1411–1416

    Google Scholar 

  11. Datsyshyn OP (2011) Modeling of the initiation of contact fatigue damages and estimation of the durability of elements of tribological conjunctions. Mater Sci 47(2):188–200

    Article  Google Scholar 

  12. Datsyshyn OP (2005) Service life and fracture of solid bodies under the conditions of cyclic contact interaction. Mater Sci 41(6):709–733

    Article  Google Scholar 

  13. Datsyshyn OP, Hlazov AYu, Levus AB (2014) Specific features of contact of the faces of an edge crack under moving Hertzian loads. Mater Sci 49(5):589–601

    Article  Google Scholar 

  14. Datsyshyn OP, Kadyra VM (2006) A fracture mechanics approach to prediction of pitting under fretting fatigue conditions. Int J Fatigue 28(4):375–385

    Article  Google Scholar 

  15. Datsyshyn OP, Kalakhan OS, Kadyra VM, Shchur RB (2004) Pitting formation under the conditions of fretting fatigue. Mater Sci 40(2):159–172

    Article  Google Scholar 

  16. Datsyshyn OP, Marchenko HP (2008) Stressed state of a half plane with shallow edge crack under Hertzian loading (a survey). Mater Sci 44(1):22–34

    Article  Google Scholar 

  17. Datsyshyn OP, Marchenko HP, Hlazov AYu, Levus AB (2004) One approach to the evaluation of durability of solid bodies. Mater Sci 40(4):484–490

    Article  Google Scholar 

  18. Datsyshyn OP, Panasyuk VV (1996) Durability and fracture calculational model of solids under their contact interaction. In: Petit J (ed) ECF-11, vol II. Mechanism and mechanics of damage and failure. EMAS LTD, Warley, pp 1381–1386

    Google Scholar 

  19. Datsyshyn OP, Panasyuk VV, Glazov AYu (2016) The model of the residual lifetime estimation of trybojoint elements by formation criteria of the typical contact fatigue damages. Int J Fatigue 83(2):300–312

    Article  Google Scholar 

  20. Datsyshyn OP, Panasyuk VV, Pryshlyak RE (2014) Effect of rounding the edges in the base of a rider on the stress intensity factors in a body with edge cracks. Mater Sci 50(1):1–13

    Article  Google Scholar 

  21. Datsyshyn OP, Pryshlyak RE, Prykhods’ka SV, et al (1998) Influence of the shape of model contact load on the stress intensity factors for an edge crack. Problemy Trybologii 3:3–16

    Google Scholar 

  22. Datsyshyn OP, Shchur RB (1998) Development of edge cracks under conditions of fretting fatigue. Problemy Trybologii 2:7–16

    Google Scholar 

  23. Dekhovich LA, Makhutov NA (1981) Use of failure mechanics for evaluating fretting fatigue strength. Sov Mater Sci 17(3):280–283

    Article  Google Scholar 

  24. Eden EM, Rose WN, Cunningham FL (1911) The endurance of metals. Proc Instn Mech Engrs 4(839): 68–76

    Google Scholar 

  25. Edwards PR (1984) Fracture mechanics application to fretting in joints. In: Advanced fracture research, Proceedings 6th international conference on fracture (ICF 6), Oxford e. a.; New Delhi, vol. 6, pp 3813–3836

    Chapter  Google Scholar 

  26. Edwards PR (1981) The application of fracture mechanics to predicting fretting fatigue. In: Waterhouse RB (ed) Fretting fatigue. Elsevier Applied Science, London, pp 67–99

    Google Scholar 

  27. Faanes S (1995) Inclined cracks in fretting fatigue. Eng Fract Mech 52(1):1–82

    Article  Google Scholar 

  28. Fernando US, Brown MW, Miller KJ (1996) Linear elastic fracture mechanics interpretation of crack growth behaviour in fretting fatigue. In: Advances in fracture resistance in materials (ICF–8 Proceeding), Vol II. Tat McGraw-Hill Publishing, New Delhi, pp 207–215

    Google Scholar 

  29. Filimonov GN, Balatskii LT (1973) Fretting v soyedineniyakh sudovykh detaley (Fretting in the Joints of Ship Components). Sudostroenie, Leningrad

    Google Scholar 

  30. Fretting fatigue: proceedings international conference of fretting fatigue, Sheffield, UK: The University of Sheffield (1993)

    Google Scholar 

  31. Golego NL, Alyab’ev AYa, Shevelya VV (1974) Fretting-koroziya metallov (Fretting Corrosion of Metals). Tekhnika, Kiev

    Google Scholar 

  32. Hasebe N, Qian J (1997) Circular rigid punch with one smooth and another sharp ends on a half-plane with edge crack. J App Mech 64:73–79

    Article  MATH  Google Scholar 

  33. Hills DA, Nowell D (1994) Mechanics of fretting fatigue. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  34. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  35. Kalakhan OS, Pokhmurs’kyi VI (2000) Influence of incomplete annealing of titanium (α+β)-alloy and its welded joints on fatigue resistance and corrosion-fatigue resistance. Mater Sci 36(2):244–251

    Article  Google Scholar 

  36. Keer LM, Bryant MD (1983) A pitting model for rolling contact fatigue. Trans ASME J Lubric Technol 105(2):198–205

    Article  Google Scholar 

  37. Kolesnikov Y, Morozov EM (1989) Mekhanika kontaktnogo razrusheniya (Mechanics of Contact Fracture). Nauka, Moscow

    Google Scholar 

  38. Kudish II (1986) Contact problem of the theory of elasticity for bodies with cracks. Prikladnaya Matematika i Mekhanika 50(6):1020–1033

    MathSciNet  MATH  Google Scholar 

  39. Lamacq V, Dubourg M-C (1999) Modeling of initial fatigue crack growth and crack branching under fretting conditions. Fatigue Fract Mater Struct 22(6):535–542

    Article  Google Scholar 

  40. Maxwell WW, Dudley BR, Cleary AB, Richards J, Shaw J (1967–8) Measures to counter fatigue failures in railway axles. Proc Instn Mech Engrs 182(1):89–108

    Article  Google Scholar 

  41. Muskhelishvili NI (1966) Nekotoryye osnovnyye zadachi matematicheskoy teorii uprugosti (Some Basic Problems of the Mathematical Theory of Elasticity). Nauka, Moscow

    Google Scholar 

  42. Nix KJ, Lindley TC (1985) The application of fracture mechanics to fretting fatigue. Fatigue Fract Engn Mater Struct 8(2):143–160

    Article  Google Scholar 

  43. Nowell D, Dini D, Hills DA (2006) Recent developments in the understanding of fretting fatigue. Eng Fract Mech 73(2):207–222

    Article  Google Scholar 

  44. Panasyuk VV (ed) (1988–1990) Mekhanika ruynuvannya ta mitsnist’ konstruktsiy (Fracture Mechanics and Strength of Materials): A Handbook. Naukovs Dumka, Kiev

    Google Scholar 

  45. Panasyuk VV, Datsyshyn OP, Marchenko HP (1996) Contact problem for a half plane with cracks subjected to the action of a rigid punch on its boundary. Mater Sci 31(6):667–678

    Article  Google Scholar 

  46. Panasyuk VV, Datsyshyn OP, Marchenko HP (2000) Stress state of a half-plane with cracks under rigid punch action. Int J Fract 101(4):347–364

    Article  Google Scholar 

  47. Panasyuk VV, Datsyshyn OP, Shchur RB (2000) Residual durability of solids contacting under conditions of fretting fatigue. Mater Sci 36(2):153–169

    Article  Google Scholar 

  48. Panasyuk VV, Savruk MP, Datsyshyn AP (1976) Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh (Distribution of Stresses near Cracks in Plates and Shells). Naukova Dumka, Kiev

    Google Scholar 

  49. Pokhmurskii VI (1985) Korozionnaya ustalost’ metallov (Corrosion Fatigue of Metals). Metallurgiya, Moscow

    Google Scholar 

  50. Pokhmurs’kyi VI, Kalakhan OS (1997) Plasma coatings and their ability to protect titanium alloys against corrosion fretting-fatigue fracture. Mater Sci 33(3):331–335

    Article  Google Scholar 

  51. Pryshlyak R, Datsyshyn O, Dukhota O, Marchenko H (2014) Shear and tensile edge cracks in the contact zone of elements of the fretting couple. In: Panasyuk VV (ed) Mekhanika ruynuvannya materialiv ta mitsnist’ konstruktsiy (Fracture Mechanics of Materials and Strength of Structures): Proceedings of the international Scientific conference. Lviv, pp 125–130

    Google Scholar 

  52. Rooke DP, Jones DA (1979) Stress intensity factors in fretting fatigue. J Strain Anal 14(1):1–6

    Article  Google Scholar 

  53. Savruk MP (1981) Dvumernyye zadachi uprugosti dlya tel s treshchinsmi (Two-Dimensional Problems of Elasticity for Bodies with Cracks). Naukova Dumka, Kiev

    MATH  Google Scholar 

  54. Savruk MP, Tomczyk A (2010) Pressure with friction of a perfectly rigid die upon an elastic half-space with cracks. Mater Sci 46(3):283–296

    Article  Google Scholar 

  55. Savruk M, Tomczyk A, Yevtushenko A (2007) Płaskie kontaktowe zagadnienie z uwzględnieniem tarcia dla półprzestrzeni ze szczeliną. Acta Mechanica et Automatica 2:41–44

    Google Scholar 

  56. Serensen SV (1975) Soprotivleniye materialov ustalostnomu i khrupkomu razrusheniyu (Resistance of Materials to Fatigue and Brittle Fracture). Atomizdat, Moscow

    Google Scholar 

  57. Shevelya VV, Kalda GS (1998) Fretting-ustalost’ metallov (Fretting Fatigue of Metals). Khmel’nits’kii, Podillya

    Google Scholar 

  58. Sosnovskii LA, Makhutov NA, Shurinov VA (1992) Contact-mechanical fatigue: basic regularities, Zavodskaya Laboratoriya 11:44–61

    Google Scholar 

  59. Sosnovskii LA, Makhutov NA, Shurinov VA (1992) Fretting fatigue: basic regularities, Zavodskaya Laboratoriya 8:45–62

    Google Scholar 

  60. Timoshenko SP, Goodier JN (1951) Theory of elasticity. New York, London et al.: McGraw-Hill, 575 p

    Google Scholar 

  61. Tomlinson GA (1927) The rusting of steel surfaces in contact. Proc Roy Soc Lond Ser A 115(1026):472–483

    Article  Google Scholar 

  62. Tonoyan VS, Minasyan AF (1975) Asymmetric contact problem for a half plane with vertical finite cut. Doklady Akademii Nauk Armyanskoy SSR 61(5):289–297

    Google Scholar 

  63. Troshchenko VT, Tsybanev HV (2002) Fretting fatigue of metallic materials and structural components. In: Troshchenko VT (ed) “Trybofatyka” (“Tribofatigue”): Proceedings of the 4th international symposium on Tribofatigue (ISTF 4), Vol 1. Ternopil’, pp 23–28

    Google Scholar 

  64. Troshchenko VT, Tsybanev GV, Khotsyanovsky AO (1994) Two-parametr model of fretting fatigue crack growth. Fatigue Fract Eng Mater Struct 17(6):15–23

    Article  Google Scholar 

  65. Turchak LI (1987) Osnovy chisel’nykh metodov (Fundamentals of Numerical Methods): A Tutorial. Nauka, Moscow

    Google Scholar 

  66. Waterhause RB (1972) Fretting Corrosion. Pergamon Press, Oxford-New York

    Google Scholar 

  67. Yarema SYa (1988) Propagation of curvilinear cracks in plates. Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela 2:156–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Datsyshyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datsyshyn, O., Panasyuk, V. (2020). Fretting Fatigue Fracture. In: Structural Integrity Assessment of Engineering Components Under Cyclic Contact. Structural Integrity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-23069-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23069-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23068-5

  • Online ISBN: 978-3-030-23069-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics