Skip to main content

Soil-Borne Entomopathogenic Bacteria and Fungi

  • Chapter
  • First Online:
Book cover Microbes for Sustainable Insect Pest Management

Abstract

Being rich in microorganisms, the soil is an ideal environment and important reservoir for harvesting various types of beneficial microorganisms. Soil-borne entomopathogenic bacteria and fungi have been regularly isolated around the world to support crop producer in the never-ending arms race of pest management. Among these microorganisms, entomopathogenic bacteria and their toxins are the most successful microbial insecticides also from the commercial point of view. They grouped into spore- and non-spore-forming entomopathogens, in which the infection process starts upon ingestion by the susceptible insect hosts. Fungi, on the other hand, remain relatively underutilized as natural enemies despite their many advantages over other biological and chemical products. They mainly classified under the class of Entomophthoromycetes and Sordariomycetes in the larger Ascomycota division, which consists around 65,000 described species. In comparison to bacteria, fungi have a wider host range and are especially suitable for controlling pests with piercing and sucking mouthparts. Entomopathogenic bacteria and fungi can be released through inundative application methods and therefore play a critical role in integrated pest management (IPM) against several pests. This chapter provides a selective review on the different types of soil-borne entomopathogenic bacteria and fungi, including their distribution, infection mechanisms and host ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araújo, J. P. M., & Hughes, D. P. (2016). Diversity of entomopathogenic fungi: Which groups conquered the insect body? Advances in Genetics, 94, 1–39.

    Article  PubMed  Google Scholar 

  • Augustyniuk-Kram, A., & Kram, K. J. (2012). Entomopathogenic fungi as an important natural regulator of insect outbreaks in forests (review). In J. A. Blanco (Ed.), Forest ecosystems – More than just trees (pp. 265–294). London: IntechOpen.

    Google Scholar 

  • Aung, O. M., Soytong, K., & Hyde, K. D. (2008). Diversity of entomopathogenic fungi in rainforests of Chiang Mai Province, Thailand. Fungal Diversity, 30, 15–22.

    Google Scholar 

  • Balazy, S. (1993). Entomophthorales. In A. Skirgiello (Ed.), Flora of Poland. Fungi (Mycota) (Vol. 24). Cracow: Polish Academy of Science.

    Google Scholar 

  • Beed, F. (2011). Micro-organisms – Climate change and genetic resources for food and agriculture: State of knowledge, risks and opportunities. Retrieved from http://www.fao.org/fileadmin/templates/nr/documents/CGRFA/Microorganism_Beed.pdf on 7 Sept 2018.

  • Berliner, E. (1915). Ueber die schlaffsucht der Ephestia kuhniella und Bac. thuringiensis n. sp. Zeitschrift Fur Angewandte Entomologie, 2, 29–56.

    Article  Google Scholar 

  • Bernard, E. C., & Arroyo, T. L. (1990). Development, distribution, and host studies of the fungus Macrobiotophthoira vermicola (Entomophthorales). The Journal of Nematology, 22, 39–44.

    CAS  PubMed  Google Scholar 

  • Bhushan, S., Eiji, T., Min, W. Y., Han, J., Kim, C. S., Jo, J. W., Han, S., Oh, J., & Sung, G. (2016). Coleopteran and lepidopteran hosts of the entomopathogenic genus cordyceps sensu lato. Journal of Mycology, 2016, 1–14, 7648219.

    Google Scholar 

  • Boguś, M. I., & Scheller, K. (2002). Extraction of an insecticidal protein fraction from the parasitic fungus Conidiobolus coronatus (Entomophthorales). Acta Parasitologica, 47, 66–72.

    Google Scholar 

  • Boomsma, J. J., Jensen, A. B., Meyling, N. V., & Eilenberg, J. (2014). Evolutionary interaction networks of insect pathogenic fungi. Annual Review of Entomology, 59, 467–485.

    Article  CAS  PubMed  Google Scholar 

  • Bridge, P. D., Clark, M. S., & Pearce, D. A. (2005). A new species of Paecilomyces isolated from the Antarctic springtail Cryptopygus antarcticus. Mycotaxon, 92, 213–222.

    Google Scholar 

  • Bruck, D. J. (2004). Natural occurrence of Entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Environmental Entomology, 33, 1335–1343.

    Article  Google Scholar 

  • Burges, H. D. (1981). Strategy for the microbal control of pests in 1980 and beyond. In H. D. Burges (Ed.), Microbial control of pests and plant diseases 1970–1980 (pp. 797–836). London: Academic.

    Google Scholar 

  • Butt, T. M., Hajek, A. E., & Humber, R. A. (1996). Gypsy moth immune defenses in response to hyphal bodies and natural protoplasts of entomophthoralean fungi. Journal of Invertebrate Pathology, 68, 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Capinera, J. L. (2008). Encyclopedia of entomology. Dordrecht: Springer.

    Book  Google Scholar 

  • Chandler, D., Bailey, A. S., Tatchell, M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical transactions of the Royal Society of London. Series B, 366, 1987–1998.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charnley, A. K. (2003). Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Advance in Botanical Research, 40, 241–321.

    Article  CAS  Google Scholar 

  • Charnley, A. K., & Collins, S. A. (2007). Entomopathogenic fungi and their role in pest control. In C. Kubicek & I. Druzhinina (Eds.), Environmental and microbial relationships. The Mycota, vol 4 (pp. 159–187). Berlin: Springer.

    Google Scholar 

  • Chien, C., & Hwang, B. (1997). First record of the occurrence of Sporodiniella umbellata (Mucorales) in Taiwan. Mycoscience, 38, 343–346.

    Article  Google Scholar 

  • Chilcott, C. N., Kalmakoff, J., & Pillai, J. S. (1983). Characterization of proteolytic activity associated with Bacillus thuringiensis var. israelensis crystals. FEMS Microbiology Letters, 18, 37–41.

    Article  CAS  Google Scholar 

  • Cooley, J. R., Marshall, D. C., & Hill, K. B. R. (2018). A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Scientific Reports, 8, 1432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidson, E. W. (2012). History of insect pathology. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 13–28). San Diego: Academic.

    Chapter  Google Scholar 

  • Descals, E., & Webster, J. (1984). Branched aquatic conidia in Erynia and Entomophthora sensu lato. Transactions of the British Mycological Society, 83, 669–682.

    Article  Google Scholar 

  • Dutky, S. R. (1940). Two new spore-forming bacteria causing milky diseases of Japanese beetle larvae. Journal of Agricultural Research, 61, 57–68.

    Google Scholar 

  • Eilenberg, J., Bresciani, J., & Latge, J. P. (1986). Ultrastructual studies of primary spore formation and discharge in the genus Entomophthora. Journal of Invertebrate Pathology, 48, 318–324.

    Article  Google Scholar 

  • Eilenberg, J., Schmidt, N. M., Meyling, N., & Wolsted, C. (2007). Preliminary survey for insect pathogenic fungi in Arctic Greenland. IOBC/WPRS Bulletin, 30, 12.

    Google Scholar 

  • Ernandes, S., & Da Rosa, F. M. C. (2014). Isolation of entomopathogenic bacteria in the Southwest region of Paraná state in Brazil. BMC Proceedings, 8, P253.

    Article  PubMed Central  Google Scholar 

  • Evans, H. C. (1982). Entomogenous fungi in tropical forest ecosystems: An appraisal. Ecological Entomology, 7, 47–60.

    Article  Google Scholar 

  • Evans, H. C. (1988). Coevolution of entomogenous fungi and their insect hosts. In K. A. Pirozynski & D. L. Hawksworth (Eds.), Coevolution of fungi with plants and animals (pp. 149–171). London: Academic.

    Google Scholar 

  • FAO. (2018). AGP- Successful soil biological management with beneficial microorganisms. Retrieved from http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/soil-biodiversity/case-studies/soil-biological-management-with-beneficial-microorganisms/en/ on 6 Sept 2018.

  • Federici, B. A., Lüthy, P., & Ibarra, J. E. (1990). Parasporal body of Bacillus thuringiensis israelensis. In H. de Barjac & D. J. Sutherland (Eds.), Bacterial control of mosquitoes & black flies: Biochemistry, genetics & applications of Bacillus thuringiensis israelensis and Bacillus sphaericus (pp. 16–44). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Freimoser, F. M., Screen, S. E., Hu, G., & St. Leger, R. J. (2003a). EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. Microbiology, 149, 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Freimoser, F. M., Screen, S., Bagga, S., Hu, G., & St. Leger, R. J. (2003b). Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology, 149, 1–9.

    Article  CAS  Google Scholar 

  • Gangwar, R. K. (2017). Role of biological control agents in integrated pest management approaches. Acta Scientific Agriculture, 1, 9–11.

    Google Scholar 

  • Gattinger, A., Palojärvi, A., & Schloter, M. (2008). Soil microbial communities and related functions. In P. Schröder, J. Pfadenhauer, & J. C. Munch (Eds.), Perspectives for agroecosystem management: Balancing environmental and socio-economic demands (pp. 279–292). New York: Elsevier.

    Chapter  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 2, 367–374.

    Article  CAS  Google Scholar 

  • González, A., Rodríguez, G., Bruzón, R. Y., Díaz, M., Companionis, A., Menéndez, Z., & Gato, R. (2013). Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba. Journal of Vector Ecology, 38, 46–52.

    Article  PubMed  Google Scholar 

  • Gryganskyi, A. P., Humber, R. A., Smith, M., Hodge, K., Huang, B., Voigt, K., & Vilgalys, R. (2013). Phylogenetic lineages in Entomophthoromycota. Persoonia e Molecular Phylogeny and Evolution of Fungi, 30, 94e105.

    Google Scholar 

  • Hajek, A. E., & Delalibera, I. (2010). Fungal pathogens as classical biological control agents against arthropods. BioControl, 55, 147–158.

    Article  Google Scholar 

  • Hanney, C. (1953). Crystalline inclusions in aerobic sporeforming bacteria. Nature, 172, 1004.

    Article  Google Scholar 

  • Hawksworth, D. L. (2011). A new dawn for the naming of fungi: Impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus: The Global Mycological Journal, 2, 155–162.

    Article  Google Scholar 

  • Hesketh, H., Roy, H. E., Eilenberg, J., Pell, J. K., & Hails, R. S. (2009). Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. In H. E. Roy, F. E. Vega, M. S. Goettel, D. Chandler, J. K. Pell, & E. Wajnberg (Eds.), The ecology of fungal Entomopathogens (pp. 55–73). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Honée, G., & Visser, B. (1993). The mode of action of Bacillus thuringiensis crystal proteins. Entomologia Experimentalis et Applicata, 69, 145–155.

    Article  Google Scholar 

  • Humber, R. A. (1989). Synopsis of a revised classification for the Entomophthorales (Zygomycotina) (Vol. 34, pp. 441–460). Mycotaxon.

    Google Scholar 

  • Humber, R. A. (2005). Entomopathogenic fungal identification. New York: US Plant, Soil & Nutrition Laboratory.

    Google Scholar 

  • Humber, R. A. (2012). Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon, 120, 477e492.

    Article  Google Scholar 

  • Ishiwata, S. (1901). On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho, 114, 1–5.

    Google Scholar 

  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Frontiers in Plant Science, 8, 1617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, A., Jeffery, S., Gardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., Ritz, K., Peres, G., Römbke, J., & van der Putten, W. H. (2010). European atlas of soil biodiversity. Luxembourg: European Commission: European Soil Data Centre (ESDAC).

    Google Scholar 

  • Kabaluk, J. T., Svircev, A. M., Goette, M. S., & Woo, S. G. (2010). The use and regulation of microbial pesticides in representative jurisdictions worldwide (p. 99). International Organization for Biological Control of Noxious Animals and Plants (IOBC).

    Google Scholar 

  • Keller, S. (1991). Arthropod-pathogenic Entomophthorales of Switzerland. II. Erynia, Eryniopsis, Neozygites, Zoophthora and Tarichium. Sydowia, 43, 39–122.

    Google Scholar 

  • Keller, S., & Zimmerman, G. (1989). Mycopathogens of soil insects. In N. Wilding, N. M. Collins, P. M. Hammond, & J. F. Webber (Eds.), Insect – Fungus interactions (pp. 240–270). London: Academic.

    Google Scholar 

  • Khan, M. A., Paul, B., Ahmad, W., Paul, S., Aggarwal, C., Khan, Z., & Akhtar, M. S. (2016). Potential of Bacillus thuringiensis in the management of pernicious lepidopteran pests. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, Soil and Microbes (volume 2) (pp. 277–301). Cham: Springer.

    Chapter  Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the fungi (10th ed., p. 332). Wallingford: CAB International. ISBN:0-85199-826-7.

    Google Scholar 

  • Lacey, L. A., Grzywacz, D., Shapiro-llan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. K., Walters, F. S., Hart, H., Palekar, N., & Chen, J. (2003). The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-Endotoxin. Applied and Environmental Microbiology, 69, 4648–4657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leja, K., Myszka, K., Kubiak, P., Wojciechowska, J., Olejnik-Schmidt, A. K., Czaczyk, K., & Grajek, W. (2011). Isolation and identification of a new Clostridium spp. from natural samples that performs effective conversion of glycerol to 1,3-propanediol and other metabolites. Acta Scientarium Polonorum-Biotechnologia, 10, 25–34.

    Google Scholar 

  • Li, Z., & Humber, R. A. (1984). Erynia pieris (Zygomycetes: Entomophthoraceae), a new pathogen of Pieris rapae (Lepidoptera: Pieridae) description, host range, and notes on Erynia virescens. Canadian Journal of Botany, 62, 653–663.

    Article  Google Scholar 

  • Li, Z. Z., Li, C. R., Huang, B., & Meizhen, M. Z. (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin, 46, 751–753.

    Article  Google Scholar 

  • Lord, J. C. (2005). From Metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89, 19–29.

    Article  PubMed  Google Scholar 

  • Maina, U. M., Galadima, I. B., Gambo, F. M., & Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6, 27–32.

    Google Scholar 

  • Martin, P. A., Gundersen-Rindal, D., Blackburn, M., & Buyer, J. (2007). Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. International Journal of Systematic and Evolutionary Microbiology, 57, 993–999.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticides: Where we stand? In N. K. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 37–75). New Delhi: Springer.

    Google Scholar 

  • Mora, M. A. E., Castilho, A. M. C., & Fraga, M. C. (2017). Classification and infection mechanism of entomopathogenic fungi. Arquivos do Instituto Biológico, 84, 1–10.

    Google Scholar 

  • Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K., & Zahner, V. (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied and Environmental Microbiology, 70, 6657–6664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pell, J. K., Eilenberg, J., Hajek, A. E., & Steinkraus, D. C. (2001). Biology, ecology and pest management potential of Entomophthorales. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 71–154). Oxfordshire: CABI.

    Chapter  Google Scholar 

  • Persinoti, G. F., Paixão, D. A. A., Bugg, T. D. H., & Squina, F. M. (2018). Genome sequence of Lysinibacillus sphaericus, a lignin-degrading bacterium isolated from municipal solid waste soil. Genome Announcements, 6, e00353-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71, 255–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasertphon, S., & Tanada, Y. (1968). The formation and circulation, in Galleria, of hyphal bodies of entomophtoraceous fungi. Journal of Invertebrate Pathology, 11, 260–280.

    Article  Google Scholar 

  • Prischepa, L., Mikulskaya, N., Gerasimovich, M., Sosnowska, D., & Balazy, S. (2011). Diversity of entomopathogenic microorganisms in pest populations of Bialowieza forest forest stands. Vytauto Didžiojo universiteto Botanikos sodo raštai, 15, 72–81.

    Google Scholar 

  • Rai, D., Updhyay, V., Mehra, P., Rana, M., & Pandey, A. K. (2014). Potential of entomopathogenic fungi as biopesticides. Indian Journal of Scientific Research and Technology, 2, 7–13.

    Google Scholar 

  • Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: Genomic analysis of microbial communities. Annual Review of Genetics, 38, 525–552.

    Article  CAS  PubMed  Google Scholar 

  • Ritz, K., McHugh, M., & Harris, J. A. (2004). Biological diversity and function in soils: Contemporary perspectives and implications in relation to the formulation of effective indicators. In R. Francaviglia (Ed.), Agricultural soil erosion and soil biodiversity: Developing indicators for policy analyses (pp. 563–572). Paris: Organisation for Economic Co-operation and Development (OECD).

    Google Scholar 

  • Rossman, A. Y., Samuels, G. J., Rogerson, C. T., & Lowen, R. (1999). Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology, 42, 1–260.

    Google Scholar 

  • Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E., & Pell, J. K. (2006). Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology, 51, 331–357.

    Article  CAS  PubMed  Google Scholar 

  • Ruiu, L., Satta, A., & Floris, L. (2007). Susceptibility of the house fly pupal parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) to the entomopathogenic bacteria Bacillus thuringiensis and Brevibacillus laterosporus. Biological Control, 43, 188–194.

    Article  Google Scholar 

  • Samson, R. A., & Nigg, H. N. (1992). Furia crustosa, fungal pathogen of forest tent caterpillar in Florida. The Florida Entomologist, 75, 280–284.

    Article  Google Scholar 

  • Samson, R. A., Evans, H. C., & Latgé, J. P. (1988). Natural control: Ecology and biology. In R. A. Samson, H. C. Evans, & J. P. Latgé (Eds.), Atlas of Entomopathogenic Fungi (pp. 140–151). Berlin: Springer.

    Chapter  Google Scholar 

  • Sandhu, S. S., Sharma, A. K., Beniwal, V., Goel, G., Batra, P., Kumar, A., Jaglan, S., Sharma, A. K., & Malhotra, S. (2012). Myco-biocontrol of insect pests: Factors involved, mechanism, and regulation. Journal of Pathogens, 2012, 126819.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoch, C. L., Crous, P. W., Groenewald, J. Z., et al. (2009). A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology, 64, 1–15-S10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, P. A., & Pell, J. K. (2003). Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61, 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Sims, G. K. (1990). Biological degradation of soil. In R. Lal & B. A. Stewart (Eds.), Advances in soil science: soil degradation (pp. 289–330). Berlin: Springer.

    Google Scholar 

  • Singh, D., Raina, T. K., & Singh, J. (2017). Entomopathogenic fungi: An effective biocontrol agent for management of insect populations naturally. Journal of Pharmaceutical Sciences and Research, 9, 830–839.

    CAS  Google Scholar 

  • Sofo, A., Palese, A. M., Casacchia, T., & Xiloyannis, C. (2014). Sustainable soil management in olive orchards: Effects on telluric microorganisms. In P. Ahmad & S. Rasool (Eds.), Emerging technologies and management of crop stress tolerance, volume 2: A sustainable approach (pp. 471–483). Cambridge, MA: Academic.

    Chapter  Google Scholar 

  • Sosnowska, D., Balazy, S., Prishchepa, L., & Mikulskaya, N. (2004). Biodiversity of arthropod pathogens in the Bialowieza Forest. Journal of Plant Protection Research, 44, 313–321.

    Google Scholar 

  • Sporleder, M., & Lacey, L. A. (2013). Biopesticides. In A. Alyokhin, C. Vincent, & P. Giordanengo (Eds.), Insect pests of potato (pp. 463–497). New York: Elsevier.

    Chapter  Google Scholar 

  • St. Leger, R. J., & Wang, C. (2010). Genetic engineering of fungal biocontrol agents to achieve efficacy against insect pests. Applied Microbiology and Biotechnology, 85, 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Steinhaus, E. A. (1951). Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpillar. Hilgardia, 20, 359–381.

    Article  Google Scholar 

  • Steinkraus, D. C., & Kramer, J. P. (1989). Development of resting spores of Erynia aquatica (Zygomycetes: Entomophthoraceae) in Aedes aegypti (Diptera: Culicidae). Environmental Entomology, 18, 1147–1152.

    Article  Google Scholar 

  • Steinkraus, D. C., Oliver, J. B., Humber, R. A., & Gaylor, M. J. (1998). Mycosis of banded winged whitefly (Trialeurodes abutilonea) (Homoptera: Aleyrodidae) caused by Orthomyces aleyrodisgen. & sp. nov. (Entomophthorales: Entomophthoraceae). Journal of Invertebrate Pathology, 72, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Steinkraus, D. C., Hajek, A. E., & Liebherr, J. K. (2017). Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae). Journal of Invertebrate Pathology, 148, 51–59.

    Article  PubMed  Google Scholar 

  • Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-ard, J. J., Srestha, B., & Spatafora, J. W. (2007). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 7, 55–59.

    Google Scholar 

  • Sung, G. H., Poinar, G. O., & Spatafora, J. W. (2008). The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Molecular Phylogenetics and Evolution, 49, 495e502.

    Article  Google Scholar 

  • Tanzini, M., Alves, S., Setten, A., & Augusto, N. (2001). Compatibilidad de agent estensoactivos com Beauveria bassiana y Metarhizium anisopliae. Manejo Integrado de Plagas, 59, 15–18.

    Google Scholar 

  • Taylor, J. W. (2011). One fungus = one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus: The Global Mycological Journal, 2, 113–120.

    Article  Google Scholar 

  • Vandenberg, J. D., & Soper, R. S. (1978). Prevalence of Entomophthorales mycoses in populations of spruce budworm, Choristoneura fumiferana. Environmental Entomology, 7, 847–853.

    Article  Google Scholar 

  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monzon, A., Ownley, B. H., Pell, J. K., Rangel, D. E. N., & Roy, H. E. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2, 149–159.

    Article  Google Scholar 

  • Vega, F. E., Meyling, N. V., Luangsa-ard, J. J., & Blackwell, M. (2012). Fungal entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (pp. 171–220). London: Academic.

    Chapter  Google Scholar 

  • Villalobos, F. J., Goh, K. M., Saville, D. J., & Chapman, R. B. (1997). Interactions among soil organic matter, levels of the indigenous entomopathogenic bacterium Serratia entomophila in soil, amber disease and the feeding activity of the scarab larva of Costelytra zealandica: A microcosm approach. Applied Soil Ecology, 5, 231–246.

    Article  Google Scholar 

  • Waldrop, M. P., Balser, T. C., & Firestone, M. K. (2000). Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry, 32, 1837–1846.

    Article  CAS  Google Scholar 

  • Zhang, N., Castlebury, L. A., Miller, A. N., Huhndorf, S. M., Schoch, C. L., Seifert, K. A., Rossman, A. Y., Rogers, J. D., Kohlmeyer, J., Volkmann-Kohlmeyer, B., & Sung, G. H. (2006). An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia, 98, 1076–1087.

    Article  CAS  PubMed  Google Scholar 

  • Zubasheva, M. V., Ganushkina, A., Smirnova, T. A., & Azizbekyan, R. R. (2010). Larvicidal activity of crystal-forming strains of Brevibacillus laterosporus. Applied Biochemistry and Microbiology, 46, 755–762.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Li Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, T.L., Syazwan, S.A., Lee, S.H. (2019). Soil-Borne Entomopathogenic Bacteria and Fungi. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_2

Download citation

Publish with us

Policies and ethics