Akbar, A., Khan, A., Carrez, F., Moessner, K.: Predictive analytics for complex IoT data streams. IEEE Internet Things J. 4(5), 1571–1582 (2017)
Google Scholar
Alaka, H., Oyedele, L., Owolabi, H., Ajayi, S., Bilal, M., Akinade, O.: Methodological approach of construction business failure prediction studies: a review. Constr. Manag. Econ. 34(11), 808–842 (2016)
Google Scholar
Austin, P., Lee, D., Steyerberg, E., Tu, J.: Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biometrical J. 54(5), 657–673 (2012)
MathSciNet
MATH
Google Scholar
Aydin, I., Karakose, M., Akin, E.: The prediction algorithm based on fuzzy logic using time series data mining method. World Acad. Sci. Eng. Technol. 51(27), 91–98 (2009)
Google Scholar
Balcaen, S., Ooghe, H.: 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. Br. Acc. Rev. 38, 63–93 (2006)
Google Scholar
Baldoni, R., Montanari, L., Rizzuto, M.: On-line failure prediction in safety-critical systems. Future Gener. Comput. Syst. 45, 123–132 (2015)
Google Scholar
Barbot, S., Lapusta, N., Avouac, J.P.: Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336(6082), 707–710 (2012)
Google Scholar
Batal, I., Cooper, G., Fradkin, D., Harrison Jr., J., Moerchen, F., Hauskrecht, M.: An efficient pattern mining approach for event detection in multivariate temporal data. Knowl. Inf. Syst. 46(1), 115–150 (2015)
Google Scholar
Bergstrom, S.: Development and application of a conceptual runoff model for Scandinavian catchments. Techncial report, SMHI RHO 7 (1976)
Google Scholar
Blazkov, S., Beven, K.: Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and topmodel. J. Hydrol. 195(1–4), 256–278 (1997)
Google Scholar
Bosse, T., Sharpanskykh, A., Treur, J.: Integrating agent models and dynamical systems. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp. 50–68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77564-5_4
CrossRef
Google Scholar
Brunner, G.: HEC-RAS river analysis system hydraulic reference manual. version 5.0. Technical report, Hydrologic Engineering Center, Davis, CA (2016)
Google Scholar
Cabedo, J., Tirado, J.: Rough sets and discriminant analysis techniques for business default forecasting. Fuzzy Econ. Rev. 20(1), 3–37 (2015)
Google Scholar
Casulli, V., Stelling, G.: Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J. Hydraul. Eng. 124(7), 678–686 (1998)
Google Scholar
Cheng, M.Y., Hoang, N.D.: Evaluating contractor financial status using a hybrid fuzzy instance based classifier: case study in the construction industry. IEEE Trans. Eng. Manag. 62(2), 184–192 (2015)
Google Scholar
Damle, C., Yalcin, A.: Flood prediction using time series data mining. J. Hydrol. 333, 305–316 (2006)
Google Scholar
Denny, M., Hunt, L., Miller, L., Harley, C.: On the prediction of extreme ecological events. Ecol. Monogr. 93(3), 397–421 (2009)
Google Scholar
Dodig-Crnkovic, G., Giovagnoli, R.: Computing nature-a network of networks of concurrent information processes. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Computing Nature, vol. 7, pp. 1–22. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37225-4_1
CrossRef
Google Scholar
du Jardin, P.: Bankruptcy prediction using terminal failure processes. Eur. J. Oper. Res. 242(1), 286–303 (2015)
MathSciNet
MATH
Google Scholar
du Jardin, P., Séverin, E.: Predicting corporate bankruptcy using a self-organizing map: an empirical study to improve the forecasting horizon of a financial failure model. Decis. Support Syst. 51(3), 701–711 (2011)
Google Scholar
Epstein, J.: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2006)
MATH
Google Scholar
Florido, E., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J., Aznarte-Mellado, J.: Detecting precursory patterns to enhance earthquake prediction in Chile. Comput. Geosci. 76, 112–120 (2015)
Google Scholar
Franz, K., Hartmann, H., Sorooshian, S., Bales, R.: Verification of national weather service ensemble streamflow predictions for water supply forecasting in the colorado river basin. J. Hydrometeorol. 4(6), 1105–1118 (2003)
Google Scholar
Fülöp, L., Beszédes, A., Tóth, G., Demeter, H., Vidács, L., Farkas, L.: Predictive complex event processing: a conceptual framework for combining complex event processing and predictive analytics. In: Proceedings of the Fifth Balkan Conference in Informatics, BCI 2012, pp. 26–31. ACM, New York (2012)
Google Scholar
Ghil, M., et al.: Extreme events: dynamics, statistics and prediction. Nonlinear Process. Geophys. 18, 295–350 (2011)
Google Scholar
Gmati, F.E., Chakhar, S., Lajoued Chaari, W., Chen, H.: A rough set approach to events prediction in multiple time series. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 796–807. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_77
CrossRef
Google Scholar
Hamerly, G., Elkan, C.: Bayesian approaches to failure prediction for disk drives. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 202–209. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Google Scholar
Hull, T.: A deterministic scenario approach to risk management. In: Enterprise Risk Management Symposium, Society of Actuaries, April edn, Chicago, IL, pp. 1–7 (2010)
Google Scholar
Iturriaga, F., Sanz, I.: Bankruptcy visualization and prediction using neural networks: a study of U.S. commercial banks. Expert Syst. Appl. 42(6), 2857–2869 (2015)
Google Scholar
Devia, G.K., Ganasri, B., Dwarakish, G.: A review on hydrological models. Aquatic Procedia 4, 1001–1007 (2015)
Google Scholar
Li, Y., Lawley, M.A., Siscovick, D.S., Zhang, D., Pagán, J.A.: Agent-based modeling of chronic diseases: a narrative review and future research directions. Preventing Chronic Dis. 13 (2016). https://doi.org/10.5888/pcd13.150561
Lin, W.Y., Hu, Y., Tsai, C.F.: Machine learning in financial crisis prediction: a survey. IEEE Trans. Syst. Man Cybern. 42(4), 421–436 (2012)
Google Scholar
Hopson, T.M., Webster, P.: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07. J. Hydrometeorol. 11(3), 618–641 (2010)
Google Scholar
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)
Google Scholar
Martínez-Álvarez, F., Troncoso, A., Morales-Esteban, A., Riquelme, J.: Computational intelligence techniques for predicting earthquakes. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 287–294 (2011)
Google Scholar
Mdhaffar, A., Rodriguez, I., Charfi, K., Abid, L., Freisleben, B.: CEP4HFP: complex event processing for heart failure prediction. IEEE Trans. NanoBiosci. 16(8), 708–717 (2017)
Google Scholar
Merkuryeva, G., Merkuryev, Y., Sokolov, B., Potryasaev, S., Zelentsov, V., Lektauers, A.: Advanced river flood monitoring, modelling and forecasting. J. Comput. Sci. 10, 77–85 (2014)
Google Scholar
Meyers, R.: Extreme Environmental Events: Complexity in Forecasting and Early Warning. Springer, New York (2010)
MATH
Google Scholar
Mitsa, T.: Temporal Data Mining. CRC Press, Boca Raton (2010)
MATH
Google Scholar
Morales-Esteban, A., Martínez-Álvarez, F., Troncoso, A., Justo, J., Rubio-Escudero, C.: Pattern recognition to forecast seismic time series. Expert Syst. Appl. 37, 8333–8342 (2010)
Google Scholar
Morchen, F., Ultsch, A.: Discovering temporal knowledge in multivariate time series. In: Weihs, C., Gaul, W. (eds.) Classification - The Ubiquitous Challenge, pp. 272–279. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28084-7_30
CrossRef
Google Scholar
Nwogugu, M.: Decision-making, risk and corporate governance: new dynamic models/algorithms and optimization for bankruptcy decisions. Appl. Math. Comput. 179(1), 386–401 (2006)
MathSciNet
MATH
Google Scholar
Povinelli, R.: Time series data mining: identifying temporal patterns for characterization and prediction of time series events. Ph.D. thesis, Marquette University, Milwaukee, WI (1999)
Google Scholar
Povinelli, R.J.: Identifying temporal patterns for characterization and prediction of financial time series events. In: Roddick, J.F., Hornsby, K. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, pp. 46–61. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45244-3_5
CrossRef
MATH
Google Scholar
Povinelli, R., Feng, X.: A new temporal pattern identification method for characterization and prediction of complex time series events. IEEE Trans. Knowl. Data Eng. 15(2), 339–352 (2003)
Google Scholar
Preston, D., Protopapas, P., Brodley, C.: Event discovery in time series. In: Apte, C., Park, H., Wang, K., Zaki, M. (eds.) Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 61–72. SIAM (2009). https://doi.org/10.1137/1.9781611972795.6
Rafiei, M., Adeli, H.: NEEWS: a novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dyn. Earthq. Eng. 100, 417–427 (2017)
Google Scholar
Razmi, A., Golian, S., Zahmatkesh, Z.: Non-stationary frequency analysis of extreme water level: application of annual maximum series and peak-over threshold approaches. Water Resour. Manag. 31(7), 2065–2083 (2017)
Google Scholar
Sahoo, R., et al.: Critical event prediction for proactive management in large-scale computer clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–435. ACM, New York (2003)
Google Scholar
Samuel, O., Grace, G., Sangaiah, A., Fang, P., Li, G.: An integrated decision support system based on ANN and Fuzzy\(\_\)AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)
Google Scholar
Tak-chung, F.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)
Google Scholar
Tamari, M.: Financial ratios as a means of forecasting bankruptcy. Manag. Int. Rev. 6(4), 15–21 (1966)
Google Scholar
Thielen, J., Bartholmes, J., Ramos, M.H., de Roo, A.: The European flood alert system-part 1: concept and development. Hydrol. Earth Syst. Sci. 13(2), 125–140 (2009)
Google Scholar
Vilalta, R., Apte, C., Hellerstein, J., Ma, S., Weiss, S.: Predictive algorithms in the management of computer systems. IBM Syst. J. 41(3), 461–474 (2002)
Google Scholar
Vrugt, J., ter Braak, C., Clark, M., Hyman, J.M., Robinson, B.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44(12) (2008). https://doi.org/10.1029/2007WR006720
Wang, C., Vo, H., Ni, P.: An IoT application for fault diagnosis and prediction. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems, pp. 726–731. IEEE (2015)
Google Scholar
Wang, S.: Online monitoring and prediction of complex time series events from nonstationary time series data. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick (2012)
Google Scholar
Wang, Y., Gao, H., Chen, G.: Predictive complex event processing based on evolving Bayesian networks. Pattern Recogn. Lett. 105, 207–216 (2018)
Google Scholar
Weiss, G., Hirsh, H.: Learning to predict rare events in categorical time-series data. Techncal report, AAAI (1998). www.aaai.org
Yan, X.B., Lu, T., Li, Y.J., Cui, G.B.: Research on event prediction in time-series data. In: Proceedings of International Conference on Machine Learning and Cybernetics, Shanghai, vol. 5, pp. 2874–2878, August 2004
Google Scholar
Yue, S., Ouarda, T., Bobee, B., Legendre, P., Bruneau, P.: The Gumbel mixed model for flood frequency analysis. J. Hydrol. 226, 88–100 (1999)
Google Scholar