Skip to main content

A Taxonomy of Event Prediction Methods

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11606)

Abstract

Most of existing event prediction approaches consider event prediction problems within a specific application domain while event prediction is naturally a cross-disciplinary problem. This paper introduces a generic taxonomy of event prediction approaches. The proposed taxonomy, which oversteps the application domain, enables a better understanding of event prediction problems and allows conceiving and developing advanced and context-independent event prediction techniques.

Keywords

  • Time series
  • Event prediction
  • Taxonomy
  • Data mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22999-3_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-22999-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Akbar, A., Khan, A., Carrez, F., Moessner, K.: Predictive analytics for complex IoT data streams. IEEE Internet Things J. 4(5), 1571–1582 (2017)

    Google Scholar 

  2. Alaka, H., Oyedele, L., Owolabi, H., Ajayi, S., Bilal, M., Akinade, O.: Methodological approach of construction business failure prediction studies: a review. Constr. Manag. Econ. 34(11), 808–842 (2016)

    Google Scholar 

  3. Austin, P., Lee, D., Steyerberg, E., Tu, J.: Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biometrical J. 54(5), 657–673 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Aydin, I., Karakose, M., Akin, E.: The prediction algorithm based on fuzzy logic using time series data mining method. World Acad. Sci. Eng. Technol. 51(27), 91–98 (2009)

    Google Scholar 

  5. Balcaen, S., Ooghe, H.: 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. Br. Acc. Rev. 38, 63–93 (2006)

    Google Scholar 

  6. Baldoni, R., Montanari, L., Rizzuto, M.: On-line failure prediction in safety-critical systems. Future Gener. Comput. Syst. 45, 123–132 (2015)

    Google Scholar 

  7. Barbot, S., Lapusta, N., Avouac, J.P.: Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336(6082), 707–710 (2012)

    Google Scholar 

  8. Batal, I., Cooper, G., Fradkin, D., Harrison Jr., J., Moerchen, F., Hauskrecht, M.: An efficient pattern mining approach for event detection in multivariate temporal data. Knowl. Inf. Syst. 46(1), 115–150 (2015)

    Google Scholar 

  9. Bergstrom, S.: Development and application of a conceptual runoff model for Scandinavian catchments. Techncial report, SMHI RHO 7 (1976)

    Google Scholar 

  10. Blazkov, S., Beven, K.: Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and topmodel. J. Hydrol. 195(1–4), 256–278 (1997)

    Google Scholar 

  11. Bosse, T., Sharpanskykh, A., Treur, J.: Integrating agent models and dynamical systems. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp. 50–68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77564-5_4

    CrossRef  Google Scholar 

  12. Brunner, G.: HEC-RAS river analysis system hydraulic reference manual. version 5.0. Technical report, Hydrologic Engineering Center, Davis, CA (2016)

    Google Scholar 

  13. Cabedo, J., Tirado, J.: Rough sets and discriminant analysis techniques for business default forecasting. Fuzzy Econ. Rev. 20(1), 3–37 (2015)

    Google Scholar 

  14. Casulli, V., Stelling, G.: Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J. Hydraul. Eng. 124(7), 678–686 (1998)

    Google Scholar 

  15. Cheng, M.Y., Hoang, N.D.: Evaluating contractor financial status using a hybrid fuzzy instance based classifier: case study in the construction industry. IEEE Trans. Eng. Manag. 62(2), 184–192 (2015)

    Google Scholar 

  16. Damle, C., Yalcin, A.: Flood prediction using time series data mining. J. Hydrol. 333, 305–316 (2006)

    Google Scholar 

  17. Denny, M., Hunt, L., Miller, L., Harley, C.: On the prediction of extreme ecological events. Ecol. Monogr. 93(3), 397–421 (2009)

    Google Scholar 

  18. Dodig-Crnkovic, G., Giovagnoli, R.: Computing nature-a network of networks of concurrent information processes. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds.) Computing Nature, vol. 7, pp. 1–22. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37225-4_1

    CrossRef  Google Scholar 

  19. du Jardin, P.: Bankruptcy prediction using terminal failure processes. Eur. J. Oper. Res. 242(1), 286–303 (2015)

    MathSciNet  MATH  Google Scholar 

  20. du Jardin, P., Séverin, E.: Predicting corporate bankruptcy using a self-organizing map: an empirical study to improve the forecasting horizon of a financial failure model. Decis. Support Syst. 51(3), 701–711 (2011)

    Google Scholar 

  21. Epstein, J.: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  22. Florido, E., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J., Aznarte-Mellado, J.: Detecting precursory patterns to enhance earthquake prediction in Chile. Comput. Geosci. 76, 112–120 (2015)

    Google Scholar 

  23. Franz, K., Hartmann, H., Sorooshian, S., Bales, R.: Verification of national weather service ensemble streamflow predictions for water supply forecasting in the colorado river basin. J. Hydrometeorol. 4(6), 1105–1118 (2003)

    Google Scholar 

  24. Fülöp, L., Beszédes, A., Tóth, G., Demeter, H., Vidács, L., Farkas, L.: Predictive complex event processing: a conceptual framework for combining complex event processing and predictive analytics. In: Proceedings of the Fifth Balkan Conference in Informatics, BCI 2012, pp. 26–31. ACM, New York (2012)

    Google Scholar 

  25. Ghil, M., et al.: Extreme events: dynamics, statistics and prediction. Nonlinear Process. Geophys. 18, 295–350 (2011)

    Google Scholar 

  26. Gmati, F.E., Chakhar, S., Lajoued Chaari, W., Chen, H.: A rough set approach to events prediction in multiple time series. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 796–807. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_77

    CrossRef  Google Scholar 

  27. Hamerly, G., Elkan, C.: Bayesian approaches to failure prediction for disk drives. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 202–209. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  28. Hull, T.: A deterministic scenario approach to risk management. In: Enterprise Risk Management Symposium, Society of Actuaries, April edn, Chicago, IL, pp. 1–7 (2010)

    Google Scholar 

  29. Iturriaga, F., Sanz, I.: Bankruptcy visualization and prediction using neural networks: a study of U.S. commercial banks. Expert Syst. Appl. 42(6), 2857–2869 (2015)

    Google Scholar 

  30. Devia, G.K., Ganasri, B., Dwarakish, G.: A review on hydrological models. Aquatic Procedia 4, 1001–1007 (2015)

    Google Scholar 

  31. Li, Y., Lawley, M.A., Siscovick, D.S., Zhang, D., Pagán, J.A.: Agent-based modeling of chronic diseases: a narrative review and future research directions. Preventing Chronic Dis. 13 (2016). https://doi.org/10.5888/pcd13.150561

  32. Lin, W.Y., Hu, Y., Tsai, C.F.: Machine learning in financial crisis prediction: a survey. IEEE Trans. Syst. Man Cybern. 42(4), 421–436 (2012)

    Google Scholar 

  33. Hopson, T.M., Webster, P.: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07. J. Hydrometeorol. 11(3), 618–641 (2010)

    Google Scholar 

  34. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)

    Google Scholar 

  35. Martínez-Álvarez, F., Troncoso, A., Morales-Esteban, A., Riquelme, J.: Computational intelligence techniques for predicting earthquakes. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 287–294 (2011)

    Google Scholar 

  36. Mdhaffar, A., Rodriguez, I., Charfi, K., Abid, L., Freisleben, B.: CEP4HFP: complex event processing for heart failure prediction. IEEE Trans. NanoBiosci. 16(8), 708–717 (2017)

    Google Scholar 

  37. Merkuryeva, G., Merkuryev, Y., Sokolov, B., Potryasaev, S., Zelentsov, V., Lektauers, A.: Advanced river flood monitoring, modelling and forecasting. J. Comput. Sci. 10, 77–85 (2014)

    Google Scholar 

  38. Meyers, R.: Extreme Environmental Events: Complexity in Forecasting and Early Warning. Springer, New York (2010)

    MATH  Google Scholar 

  39. Mitsa, T.: Temporal Data Mining. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  40. Morales-Esteban, A., Martínez-Álvarez, F., Troncoso, A., Justo, J., Rubio-Escudero, C.: Pattern recognition to forecast seismic time series. Expert Syst. Appl. 37, 8333–8342 (2010)

    Google Scholar 

  41. Morchen, F., Ultsch, A.: Discovering temporal knowledge in multivariate time series. In: Weihs, C., Gaul, W. (eds.) Classification - The Ubiquitous Challenge, pp. 272–279. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28084-7_30

    CrossRef  Google Scholar 

  42. Nwogugu, M.: Decision-making, risk and corporate governance: new dynamic models/algorithms and optimization for bankruptcy decisions. Appl. Math. Comput. 179(1), 386–401 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Povinelli, R.: Time series data mining: identifying temporal patterns for characterization and prediction of time series events. Ph.D. thesis, Marquette University, Milwaukee, WI (1999)

    Google Scholar 

  44. Povinelli, R.J.: Identifying temporal patterns for characterization and prediction of financial time series events. In: Roddick, J.F., Hornsby, K. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, pp. 46–61. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45244-3_5

    CrossRef  MATH  Google Scholar 

  45. Povinelli, R., Feng, X.: A new temporal pattern identification method for characterization and prediction of complex time series events. IEEE Trans. Knowl. Data Eng. 15(2), 339–352 (2003)

    Google Scholar 

  46. Preston, D., Protopapas, P., Brodley, C.: Event discovery in time series. In: Apte, C., Park, H., Wang, K., Zaki, M. (eds.) Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 61–72. SIAM (2009). https://doi.org/10.1137/1.9781611972795.6

  47. Rafiei, M., Adeli, H.: NEEWS: a novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dyn. Earthq. Eng. 100, 417–427 (2017)

    Google Scholar 

  48. Razmi, A., Golian, S., Zahmatkesh, Z.: Non-stationary frequency analysis of extreme water level: application of annual maximum series and peak-over threshold approaches. Water Resour. Manag. 31(7), 2065–2083 (2017)

    Google Scholar 

  49. Sahoo, R., et al.: Critical event prediction for proactive management in large-scale computer clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–435. ACM, New York (2003)

    Google Scholar 

  50. Samuel, O., Grace, G., Sangaiah, A., Fang, P., Li, G.: An integrated decision support system based on ANN and Fuzzy\(\_\)AHP for heart failure risk prediction. Expert Syst. Appl. 68, 163–172 (2017)

    Google Scholar 

  51. Tak-chung, F.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Google Scholar 

  52. Tamari, M.: Financial ratios as a means of forecasting bankruptcy. Manag. Int. Rev. 6(4), 15–21 (1966)

    Google Scholar 

  53. Thielen, J., Bartholmes, J., Ramos, M.H., de Roo, A.: The European flood alert system-part 1: concept and development. Hydrol. Earth Syst. Sci. 13(2), 125–140 (2009)

    Google Scholar 

  54. Vilalta, R., Apte, C., Hellerstein, J., Ma, S., Weiss, S.: Predictive algorithms in the management of computer systems. IBM Syst. J. 41(3), 461–474 (2002)

    Google Scholar 

  55. Vrugt, J., ter Braak, C., Clark, M., Hyman, J.M., Robinson, B.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44(12) (2008). https://doi.org/10.1029/2007WR006720

  56. Wang, C., Vo, H., Ni, P.: An IoT application for fault diagnosis and prediction. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems, pp. 726–731. IEEE (2015)

    Google Scholar 

  57. Wang, S.: Online monitoring and prediction of complex time series events from nonstationary time series data. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick (2012)

    Google Scholar 

  58. Wang, Y., Gao, H., Chen, G.: Predictive complex event processing based on evolving Bayesian networks. Pattern Recogn. Lett. 105, 207–216 (2018)

    Google Scholar 

  59. Weiss, G., Hirsh, H.: Learning to predict rare events in categorical time-series data. Techncal report, AAAI (1998). www.aaai.org

  60. Yan, X.B., Lu, T., Li, Y.J., Cui, G.B.: Research on event prediction in time-series data. In: Proceedings of International Conference on Machine Learning and Cybernetics, Shanghai, vol. 5, pp. 2874–2878, August 2004

    Google Scholar 

  61. Yue, S., Ouarda, T., Bobee, B., Legendre, P., Bruneau, P.: The Gumbel mixed model for flood frequency analysis. J. Hydrol. 226, 88–100 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Chakhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gmati, F.E., Chakhar, S., Chaari, W.L., Xu, M. (2019). A Taxonomy of Event Prediction Methods. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22999-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22998-6

  • Online ISBN: 978-3-030-22999-3

  • eBook Packages: Computer ScienceComputer Science (R0)