Skip to main content

Destroying Bicolored \(P_3\)s by Deleting Few Edges

  • Conference paper
  • First Online:
  • 384 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Abstract

We introduce and study the Bicolored \(P_3\) Deletion problem defined as follows. The input is a graph \(G=(V,E)\) where the edge set E is partitioned into a set \(E_b\) of blue edges and a set \(E_r\) of red edges. The question is whether we can delete at most k edges such that G does not contain a bicolored \(P_3\) as an induced subgraph. Here, a bicolored \(P_3\) is a path on three vertices with one blue and one red edge. We show that Bicolored \(P_3\) Deletion is NP-hard and cannot be solved in \(2^{o(|V|+|E|)}\) time on bounded-degree graphs if the ETH is true. Then, we show that Bicolored \(P_3\) Deletion is polynomial-time solvable when G does not contain a bicolored \(K_3\), that is, a triangle with edges of both colors. Moreover, we provide a polynomial-time algorithm for the case where G contains no induced blue \(P_3\), red \(P_3\), blue \(K_3\), and red \(K_3\). Finally, we show that Bicolored \(P_3\) Deletion can be solved in \(\mathcal {O}(1.85^k\cdot |V|^5)\) time and that it admits a kernel with \(\mathcal {O}(\varDelta k^2)\) vertices, where \(\varDelta \) is the maximum degree of G.

Some of the results of this work are contained in the third author’s Bachelor thesis [19].

F. Sommer was supported by the DFG, project MAGZ (KO 3669/4-1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amar, D., Shamir, R.: Constructing module maps for integrated analysis of heterogeneous biological networks. Nucleic Acids Res. 42(7), 4208–4219 (2014)

    Article  Google Scholar 

  2. Aravind, N.R., Sandeep, R.B., Sivadasan, N.: Dichotomy results on the hardness of \(H\)-free edge modification problems. SIAM J. Discrete Math. 31(1), 542–561 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999)

    Article  Google Scholar 

  4. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_5

    Chapter  Google Scholar 

  5. Brandes, U., Hamann, M., Strasser, B., Wagner, D.: Fast quasi-threshold editing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 251–262. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_22

    Chapter  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  7. Bruckner, S., Hüffner, F., Komusiewicz, C.: A graph modification approach for finding core-periphery structures in protein interaction networks. Algorithms Mol. Biol. 10, 16 (2015)

    Article  Google Scholar 

  8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  10. Grüttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and cluster deletion. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) WG 2018. LNCS, vol. 11159, pp. 239–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00256-5_20

    Chapter  Google Scholar 

  11. Guo, J.: A more effective linear kernelization for cluster editing. Theoret. Comput. Sci. 410(8–10), 718–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H.-P., Middendorf, M., Stadler, P.F.: Phylogenomics with paralogs. Proc. Nat. Acad. Sci. 112(7), 2058–2063 (2015)

    Article  Google Scholar 

  13. Hopcroft, J.E., Karp, R.M.: An n\({}^{\text{5/2 }}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  16. Komusiewicz, C.: Tight running time lower bounds for vertex deletion problems. ACM Trans. Comput. Theory 10(2), 6:1–6:18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450 (2013)

    Article  Google Scholar 

  19. Schestag, J.: Liechtenstein-\(P_3\)s in two-colored graphs. Bachelorarbeit, Philipps-Universität Marburg (2019)

    Google Scholar 

  20. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sommer, F., Komusiewicz, C.: Parameterized algorithms for module map problems. In: Lee, J., Rinaldi, G., Mahjoub, A.R. (eds.) ISCO 2018. LNCS, vol. 10856, pp. 376–388. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96151-4_32

    Chapter  Google Scholar 

  22. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wittkop, T., Baumbach, J., Lobo, F.P., Rahmann, S.: Large scale clustering of protein sequences with force-a layout based heuristic for weighted cluster editing. BMC Bioinform. 8(1), 396 (2007)

    Article  Google Scholar 

  24. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grüttemeier, N., Komusiewicz, C., Schestag, J., Sommer, F. (2019). Destroying Bicolored \(P_3\)s by Deleting Few Edges. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics