Skip to main content

A Note on the Ordinal Analysis of \(\mathbf {RCA}_0 + \mathrm {WO}(\mathbf {\sigma })\)

  • Conference paper
  • First Online:
  • 388 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Abstract

We fill an apparent gap in the literature by giving a short and self-contained proof that the ordinal of the theory \(\mathbf {RCA}_0 + \mathrm {WO}(\sigma )\) is \(\sigma ^\omega \), for any ordinal \(\sigma \) satisfying \(\omega \cdot \sigma = \sigma \) (e.g., \(\omega ^\omega \), \(\omega ^{\omega ^\omega }\), \(\varepsilon _0\)). Theories of the form \(\mathbf {RCA}_0 + \mathrm {WO}(\sigma )\) are of interest in Proof Theory and Reverse Mathematics because of their connections to a number of well-investigated combinatorial principles related to various subsystems of arithmetic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For example, in proving that a \(\varPi ^1_1\)-version of Ramsey’s Theorem called the Adjacent Ramsey Theorem is equivalent to \(\mathrm {WO}(\varepsilon _0)\) over \(\mathbf {RCA}_0\), [4] Lemma 2.2 makes use of the false equivalence, over \(\mathbf {RCA}_0\), between \(\mathrm {WO}(\varepsilon _0)\) and the \(\varPi ^1_1\)-soundness of \(\mathbf {ACA}_0\). The presentation in the later [5] avoids this pitfall but establishes a slightly different result.

  2. 2.

    They may also contain cuts with formulas \(R(t_1,\ldots ,t_k),\lnot R(t_1,\ldots ,t_k)\), where R is a symbol for a primitive recursive predicate. But these are entirely harmless.

References

  1. Beckmann, A.: Separating fragments of bounded arithmetic. Ph.D. thesis, Universität Münster (1996)

    Google Scholar 

  2. Beckmann, A., Pohlers, W.: Applications of cut-free infinitary derivations to generalized recursion theory. Ann. Pure Appl. Logic 94, 7–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlucci, L., Dehornoy, P., Weiermann, A.: Unprovability results involving braids. Proc. London Math. Soci. 102(1), 159–192 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Friedman, H.: Adjacent Ramsey theory. Draft, August 2010. https://u.osu.edu/friedman.8/

  5. Friedman, H., Pelupessy, F.: Independence of Ramsey theorem variants using \( \varepsilon _0\). Proc. Am. Math. Soc. 144, 853–860 (2016)

    Article  MATH  Google Scholar 

  6. Friedman, H., Sheard, S.: Elementary descent recursion and proof theory. Ann. Pure Appl. Logic 71, 1–45 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hatzikiriakou, K., Simpson, S.G.: Reverse mathematics, Young diagrams, and the ascending chain condition. J. Symbolic Logic 82, 576–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kreisel, G., Lévy, A.: Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 14, 97–142 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kreuzer, A., Yokoyama, K.: On principles between \({\varSigma }_{1}\)- and \({\varSigma }_{2}\)-induction, and monotone enumerations. J. Math. Logic 16, 1650004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rathjen, M.: The art of ordinal analysis. In: Sanz-Solé, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians, Madrid, 22–30 August 2006, pp. 45–69. European Mathematical Society (2006)

    Google Scholar 

  11. Schütte, K.: Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. Mathematische Annalen 122, 369–389 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schütte, K.: Beweistheorie, 1st ed. Springer, Berlin (1960)

    Google Scholar 

  13. Schütte, K.: Proof Theory. Grundlehren der mathematischen Wissenschaften, vol. 225, 1st edn. Springer, Heidelberg (1977). https://doi.org/10.1007/978-3-642-66473-1

    Book  MATH  Google Scholar 

  14. Schwichtenberg, H.: Proof theory: some applications of cut-elimination. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 867–895. North Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  15. Simpson, S.: Ordinal numbers and the Hilbert basis theorem. J. Symbolic Logic 53, 961–974 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simpson, S.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, New York (2009). Association for Symbolic Logic

    Book  MATH  Google Scholar 

  17. Sommer, R.: Transfinite induction within Peano arithmetic. Ann. Pure Appl. Logic 76, 231–289 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The Syntax and Semantics of Infinitary Languages. LNM, vol. 72, pp. 204–236. Springer, Heidelberg (1968). https://doi.org/10.1007/BFb0079691

    Chapter  Google Scholar 

  19. Takeuti, G.: Proof Theory, 2nd edn. North Holland, Amsterdam (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

This publication was made possible through the support of a grant from the John Templeton Foundation (“A new dawn of intuitionism: mathematical and philosophical advances,” ID 60842). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Carlucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlucci, L., Mainardi, L., Rathjen, M. (2019). A Note on the Ordinal Analysis of \(\mathbf {RCA}_0 + \mathrm {WO}(\mathbf {\sigma })\). In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics