Skip to main content

Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus

  • Chapter
  • First Online:
Neurosecretion: Secretory Mechanisms

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 8))

  • 494 Accesses

Abstract

Oxytocin (OT) is a critical molecule for social recognition that mediates social memory and emotional behaviors. OT is known to be released during stress and acts as an anxiolytic factor. Recent studies revealed higher levels of OT release in hypothalamus culture isolated from subordinate mice in group-housed males than in that from dominant mice after cage-switch stress. OT concentrations in micro-perfusates at the paraventricular nucleus upon perfusion stimulation with cADPR were enhanced in subordinate mice compared with dominant mice. OT concentration in cerebrospinal fluid was higher in endotoxin-shock mice with fever than in controls without an increase in body temperature. In mice exposed to the new environmental stress, the CSF OT level transiently increased at 5 min from start of exposure, while the rectal temperature also increased. OT release under various conditions was sensitive to antagonists, gene knockout, or mRNA levels of CD38 or TRPM2 in the hypothalamus. These findings indicated that cADPR and hyperthermia co-regulate hypothalamic OT secretion during social stress by elevation of intracellular free Ca2+ concentrations involved in CD38-dependent Ca2+ mobilization and TRPM2-dependent Ca2+ influx. Interaction between CD38 and TRPM2 seems to involve a different mechanism for stress-induced release of OT that may result in anxiolytic effects, resulting in transient rescission of autistic phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amina S, Hashii M, Ma WJ, Yokoyama S, Lopatina O, Liu HX, Islam MS, Higashida H (2010) Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108-15 neuronal cells with or without exogenous expression of human oxytocin receptors. J Neuroendocrinol 22:460–466

    Article  CAS  Google Scholar 

  • Bouwknecht JA, Olivier B, Paylor RE (2007) The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev 31:41–59

    Article  CAS  Google Scholar 

  • Curran LK, Newschaffer CJ, Lee LC, Crawford SO, Johnston MV, Zimmerman AW (2007) Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 120:e1386–e1392

    Article  Google Scholar 

  • Dayanithi G, Forostyak O, Ueta Y, Verkhratsky A, Toescu EC (2012) Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium 51:293–299

    Article  CAS  Google Scholar 

  • Ditzen B, Heinrichs M (2014) Psychobiology of social support: the social dimension of stress buffering. Restor Neurol Neurosci 32:149–162

    PubMed  Google Scholar 

  • Fliegert R, Bauche A, Wolf Pérez AM, Watt JM, Rozewitz MD, Winzer R, Janus M, Gu F, Rosche A, Harneit A, Flato M, Moreau C, Kirchberger T, Wolters V, Potter BVL, Guse AH (2017) 2′-Deoxyadenosine 5′-diphosphoribose is an endogenous TRPM2 superagonist. Nat Chem Biol 13:1036–1044

    Google Scholar 

  • Higashida H (2016) Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory. J Physiol Sci 66:275–282

    Article  CAS  Google Scholar 

  • Higashida H, Yokoyama S, Huang JJ, Liu L, Ma WJ, Akther S, Higashida C, Kikuchi M, Minabe Y, Munesue T (2012) Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 61:828–838

    Article  CAS  Google Scholar 

  • Higashida H, Yuhi T, Akther S, Amina S, Zhong J, Liang M, Nishimura T, Liu HX, Lopatina O (2017) Oxytocin release via activation of TRPM2 and CD38 in the hypothalamus during hyperthermia in mice: implication for autism spectrum disorder. Neurochem Int (17):30234–30236. pii: S0197-0186

    Google Scholar 

  • Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–779

    Article  CAS  Google Scholar 

  • Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45

    Article  CAS  Google Scholar 

  • Kluger MJ, O’Reilly B, Shope TR, Vander AJ (1987) Further evidence that stress hyperthermia is a fever. Physiol Behav 42:763–766

    Article  Google Scholar 

  • Kosaka H, Okamoto Y, Munesue T, Yamasue H, Inohara K, Fujioka T, Anme T, Orisaka M, Ishitobi M, Jung M, Fujisawa TX, Tanaka S, Arai S, Asano M, Saito DN, Sadato N, Tomoda A, Omori M, Sato M, Okazawa H, Higashida H, Wada Y, Inohara K, Fujioka T (2016) Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: a 24-week randomized clinical trial. Transl Psychiatry 6:e872

    Article  CAS  Google Scholar 

  • Lee HC, Zhao YJ (2014) The type III calcium signaling mechanism of CD38. Messenger 3:59–64

    Article  Google Scholar 

  • Lindzey G, Winston H, Manosevitz M (1961) Social dominance in inbred mouse strains. Nature 191:474–476

    Article  CAS  Google Scholar 

  • Liu HX, Lopatina O, Amina S, Higashida C, Islam MS, Graeff R, Lee HC, Hashii M, Higashida H (2012) Intracellular calcium concentrations regulated by cyclic ADP-ribose and heat in the mouse hypothalamus. Messenger 1:150–159

    Article  Google Scholar 

  • Lopatina O, Inzhutova A, Salmina AB, Higashida H (2013) The roles of oxytocin and CD38 in social or parental behaviors. Front Neurosci 6:182

    Article  Google Scholar 

  • McNally JM, Custer EE, Ortiz-Miranda S, Woodbury DJ, Kraner SD, Salzberg BM, Lemos JR (2014) Functional ryanodine receptors in the membranes of neurohypophysial secretory granules. J Gen Physiol 143:693–702

    Article  CAS  Google Scholar 

  • Mehler MF, Purpura DP (2009) Autism, fever, epigenetics and the locus coeruleus. Brain Res Rev 59:388–392

    Article  Google Scholar 

  • Munesue T, Nakamura H, Kikuchi M, Miura Y, Takeuchi N, Anme T, Nanba E, Adachi K, Tsubouchi K, Sai Y, Miyamoto K, Horike S, Yokoyama S, Nakatani H, Niida Y, Kosaka H, Minabe Y, Higashida H (2016) Oxytocin for male subjects with autism spectrum disorder and comorbid intellectual disabilities: a randomized pilot study. Front Psych 7:2

    Google Scholar 

  • Naviaux RK, Curtis B, Li K, Naviaux JC, Bright AT, Reiner GE, Westerfield M, Goh S, Alaynick WA, Wang L, Capparelli EV, Adams C, Sun J, Jain S, He F, Arellano DA, Mash LE, Chukoskie L, Lincoln A, Townsend J (2017) Low-dose suramin in autism spectrum disorder: a small, phase I/II, randomized clinical trial. Ann Clin Transl Neurol 4:491–505

    Article  CAS  Google Scholar 

  • Neumann D, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659

    Article  CAS  Google Scholar 

  • Quirin M, Kuhl J, Düsing R (2011) Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities. Psychoneuroendocrinology 36:898–904

    Article  CAS  Google Scholar 

  • Rasmussen S, Miller MM, Filipski SB, Tolwani RJ (2011) Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci 50:479–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer R, Harker CT, Vander AJ, Kluger MJ (1986) Hyperthermia induced by open-field stress is blocked by salicylate. Physiol Behav 36:1179–1182

    Article  CAS  Google Scholar 

  • Song K, Wang H, Kamm GB, Pohle J, de Castro Reis F, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353:1393–1398

    Article  CAS  Google Scholar 

  • Uchida K, Tominaga M (2011) The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion. Endocr J 58:1021–1028

    Article  CAS  Google Scholar 

  • Velázquez-Marrero C, Ortiz-Miranda S, Marrero HG, Custer EE, Treistman SN, Lemos JR (2014) μ-Opioid inhibition of Ca2+ currents and secretion in isolated terminals of the neurohypophysis occurs via ryanodine-sensitive Ca2+ stores. J Neurosci 34:3733–3742

    Article  Google Scholar 

  • Viero C, Shibuya I, Kitamura N, Fujihara H, Verkhratsky A, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G (2010) Oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 16:e138–e156

    Article  CAS  Google Scholar 

  • Vinkers CH, van Bogaert MJ, Klanker M, Korte SM, Oosting R, Hanania T, Hopkins SC, Olivier B, Groenink L (2008) Translational aspects of pharmacological research into anxiety disorders: the stress-induced hyperthermia (SIH) paradigm. Eur J Pharmacol 585:407–425

    Article  CAS  Google Scholar 

  • Yirmiya R, Pollak Y, Barak O, Avitsur R, Ovadia H, Bette M, Weihe E, Weidenfeld J (2001) Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacology 24:531–544

    Article  CAS  Google Scholar 

  • Zhong J, Amina S, Liang M, Akther S, Yuhi T, Nishimura T, Tsuji C, Tsuji T, Liu HX, Hashii M, Furuhara K, Yokoyama S, Yamamoto Y, Okamoto H, Zhao YJ, Lee HC, Tominaga M, Lopatina O, Higashida H (2016) Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front Neurosci 10:304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiro Higashida .

Editor information

Editors and Affiliations

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Higashida et al. (2017) This article stresses the relation between hyperthermia and autism or stress.

  • Jin et al. (2007) This is the first paper to describe the role of CD38 and its product, cyclic ADP-ribose, in social behavior.

  • Liu et al. (2012) The article shows oxytocin release owing to heat in vitro.

  • Munesue et al. (2016) In this clinical trial, it is reported that patients with both autism spectrum disorder and intellectual disability were feasible to oxytocin nasal administration.

  • Naviaux et al. (2017) This article describes that suramin is used for treatment of autism by hyperthermia.

  • Zhong et al. (2016) This paper describes that oxytocin release in the brain is owing to both hyperthermia and cyclic ADP-ribose in subordinate mice exposed to social stress.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higashida, H., Lopatina, O. (2020). Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus. In: Lemos, J., Dayanithi, G. (eds) Neurosecretion: Secretory Mechanisms. Masterclass in Neuroendocrinology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-22989-4_3

Download citation

Publish with us

Policies and ethics