Skip to main content

How to Run an Evaluation Task

With a Primary Focus on Ad Hoc Information Retrieval

Part of the The Information Retrieval Series book series (INRE,volume 41)

Abstract

This chapter provides a general guideline for researchers who are planning to run a shared evaluation task for the first time, with a primary focus on simple ad hoc Information Retrieval (IR). That is, it is assumed that we have a static target document collection and a set of test topics (i.e., search requests), where participating systems are required to produce a ranked list of documents for each topic. The chapter provides a step-by-step description of what a task organiser team is expected to do. Section 1 discusses how to define the evaluation task; Sect. 2 how to publicise it and why it is important. Section 3 describes how to design and build test collections, as well as how inter-assessor agreement can be quantified. Section 4 explains how the results submitted by participants can be evaluated; examples of tools for computing evaluation measures and conducting statistical significance tests are provided. Finally, Sect. 5 discusses how the fruits of running the task should be shared to the research community, how progress should be monitored, and how we may be able to improve the task design for the next round. N.B.: A prerequisite to running a successful task is that you have a good team of organisers who can collaborate effectively. Each team member should be well-motivated and committed to running the task. They should respond to emails in a timely manner and should be able to meet deadlines. Organisers should be well-organised!

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22948-1_3
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-22948-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan J, Carterette B, Aslam JA, Pavlu V, Dachev B, Kanoulas E (2008) Million query track 2007 overview. In: Proceedings of TREC 2007

    Google Scholar 

  • Alonso O, Rose DE, Stewart B (2008) Crowdsourcing for relevance evaluation. SIGIR Forum 42(2):9

    CrossRef  Google Scholar 

  • Bailey P, Craswell N, Soboroff I, Thomas P, de Vries AP, Yilmaz E (2008) Relevance assessment: are judges exchangeable and does it matter? In: Proceedings of ACM SIGIR 2008, pp 667–674

    Google Scholar 

  • Buckley C, Voorhees EM (2004) Retrieval evaluation with incomplete information. In: Proceedings of ACM SIGIR 2004, pp 25–32

    Google Scholar 

  • Buckley C, Voorhees EM (2005) Retrieval system evaluation. In: Voorhees EM, Harman DK (eds) TREC: experiment and evaluation in information retrieval. The MIT Press, Boston, chap 3

    Google Scholar 

  • Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: Proceedings of ACM ICML 2005, pp 89–96

    Google Scholar 

  • Carterette B (2012) Multiple testing in statistical analysis of systems-based information retrieval experiments. ACM TOIS 30(1):4

    CrossRef  Google Scholar 

  • Carterette B (2015) Bayesian inference for information retrieval evaluation. In: Proceedings of ACM ICTIR 2015, pp 31–40

    CrossRef  Google Scholar 

  • Carterette B, Bennett PN, Chickering DM, Dumais ST (2008a) Here or there: preference judgments for relevance. In: Proceedings of ECIR 2008 (LNCS), vol 4956, pp 16–27

    Google Scholar 

  • Carterette B, Pavlu V, Kanoulas E, Aslam JA, Allan J (2008b) Evaluation over thousands of queries. In: Proceedings of ACM SIGIR 2008, pp 651–658

    Google Scholar 

  • Chandar P, Carterette B (2012) Using preference judgments for novel document retrieval. In: Proceedings of ACM SIGIR 2012, pp 861–870

    CrossRef  Google Scholar 

  • Chapelle O, Metzler D, Zhang Y, Grinspan P (2009) Expected reciprocal rank for graded relevance. In: Proceedings of ACM CIKM 2009, pp 621–630

    Google Scholar 

  • Chapelle O, Ji S, Liao C, Velipasaoglu E, Lai L, Wu SL (2011) Intent-based diversification of web search results: metrics and algorithms. Inf Retr 14(6):572–592

    CrossRef  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    CrossRef  Google Scholar 

  • Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol Bull 70(4):213–220

    CrossRef  Google Scholar 

  • Crawley MJ (2015) Statistics: an introduction using R, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  • Ekstrand-Abueg M, Pavlu V, Kato MP, Sakai T, Yamamoto T, Iwata M (2013) Exploring semi-automatic nugget extraction for Japanese one click access evaluation. In: Proceedings of ACM SIGIR 2013, pp 749–752

    Google Scholar 

  • Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378–382

    CrossRef  Google Scholar 

  • Harman DK (2005) The TREC test collections. In: Voorhees EM, Harman DK (eds) TREC: experiment and evaluation in information retrieval. The MIT Press, Boston, chap 2

    Google Scholar 

  • Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM TOIS 20(4):422–446

    CrossRef  Google Scholar 

  • Krippendorff K (2013) Content analysis: an introduction to its methodology, 3rd edn. SAGE Publications, Los Angeles

    Google Scholar 

  • Lease M, Yilmaz E (2011) Crowdsourcing for information retrieval. SIGIR Forum 45(2):66–75

    CrossRef  Google Scholar 

  • Luo C, Sakai T, Liu Y, Dou Z, Xiong C, Xu J (2017) Overview of the NTCIR-13 we want web task. In: Proceedings of NTCIR-13

    Google Scholar 

  • Moffat A, Zobel J (2008) Rank-biased precision for measurement of retrieval effectiveness. ACM TOIS 27(1):2

    CrossRef  Google Scholar 

  • Nagata Y (2003) How to design the sample size (in Japanese). Asakura Shoten

    Google Scholar 

  • Randolph JJ (2005) Free-marginal multirater kappa (multirater κ free): an alternative to Fleiss’ fixed marginal multirater kappa. In: Joensuu learning and instruction symposium 2005

    Google Scholar 

  • Sakai T (2004) Ranking the NTCIR systems based on multigrade relevance. In: Proceedings of AIRS 2004 (LNCS), vol 3411, pp 251–262

    CrossRef  Google Scholar 

  • Sakai T (2006) Evaluating evaluation metrics based on the bootstrap. In: Proceedings of ACM SIGIR 2006, pp 525–532

    Google Scholar 

  • Sakai T (2007) Alternatives to bpref. In: Proceedings of ACM SIGIR 2007, pp 71–78

    Google Scholar 

  • Sakai T (2014) Metrics, statistics, tests. In: PROMISE winter school 2013: bridging between information retrieval and databases (LNCS), vol 8173, pp 116–163

    Google Scholar 

  • Sakai T (2015) Information access evaluation methodology: for the progress of search engines (in Japanese). Corona Publishing, New York

    Google Scholar 

  • Sakai T (2016) Topic set size design. Inf Retr J 19(3):256–283

    CrossRef  Google Scholar 

  • Sakai T (2017a) The effect of inter-assessor disagreement on IR system evaluation: a case study with lancers and students. In: Proceedings of EVIA 2017, pp 31–38

    Google Scholar 

  • Sakai T (2017b) The probability that your hypothesis is correct, credible intervals, and effect sizes for ir evaluation. In: Proceedings of ACM SIGIR 2017, pp 25–34

    Google Scholar 

  • Sakai T (2018a) Laboratory experiments in information retrieval: sample sizes, effect sizes, and statistical power. Springer, Cham. https://link.springer.com/book/10.1007/978-981-13-1199-4

    CrossRef  Google Scholar 

  • Sakai T (2018b) Topic set size design for paired and unpaired data. In: Proceedings of ACM ICTIR 2018

    Google Scholar 

  • Sakai T, Lin CY (2010) Ranking retrieval systems without relevance assessments: revisited. In: Proceedings of EVIA 2010, pp 25–33

    Google Scholar 

  • Sakai T, Robertson S (2008) Modelling a user population for designing information retrieval metrics. In: Proceedings of EVIA 2008, pp 30–41

    Google Scholar 

  • Sakai T, Song R (2011) Evaluating diversified search results using per-intent graded relevance. In: Proceedings of ACM SIGIR 2011, pp 1043–1052

    Google Scholar 

  • Sakai T, Dou Z, Yamamoto T, Liu Y, Zhang M, Song R, Kato MP, Iwata M (2013) Overview of the NTCIR-10 INTENT-2 task. In: Proceedings of NTCIR-10, pp 94–123

    Google Scholar 

  • Smucker MD, Allan J, Carterette B (2007) A comparison of statistical significance tests for information retrieval evaluation. In: Proceedings of ACM CIKM 2007, pp 623–632

    Google Scholar 

  • Sparck Jones K, van Rijsbergen CJ (1975) Report on the need for and provision of an ‘ideal’ information retrieval test collection. Tech. rep., Computer Laboratory, University of Cambridge, British Library Research and Development Report No. 5266

    Google Scholar 

  • Voorhees EM (2000) Variations in relevance judgments and the measurement of retrieval effectiveness. Inf Process Manag 36:697–716

    CrossRef  Google Scholar 

  • Voorhees EM (2002) The philosophy of information retrieval evaluation. In: Proceedings of ECIR 2002 (LNCS), vol 2406, pp 355–370

    Google Scholar 

  • Webber W, Moffat A, Zobel J (2008) Statistical power in retrieval experimentation. In: Proceedings of ACM CIKM 2008, pp 571–580

    Google Scholar 

  • Yilmaz E, Aslam JA (2006) Estimating average precision with incomplete and imperfect judgments. In: Proceedings of ACM CIKM 2006, pp 102–111

    Google Scholar 

  • Zobel J (1998) How reliable are the results of large-scale information retrieval experiments? In: Proceedings of ACM SIGIR 1998, pp 307–314

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sakai, T. (2019). How to Run an Evaluation Task. In: Ferro, N., Peters, C. (eds) Information Retrieval Evaluation in a Changing World. The Information Retrieval Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-22948-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22948-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22947-4

  • Online ISBN: 978-3-030-22948-1

  • eBook Packages: Computer ScienceComputer Science (R0)