Skip to main content

Deep Generative Models for Image Generation: A Practical Comparison Between Variational Autoencoders and Generative Adversarial Networks

  • Conference paper
  • First Online:
Mobile, Secure, and Programmable Networking (MSPN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11557))

Abstract

Deep Learning models can achieve impressive performance in supervised learning but not for unsupervised one. In image generation problem for example, we have no concrete target vector. Generative models have been proven useful for solving this kind of issues. In this paper, we will compare two types of generative models: Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). We apply those methods to different data sets to point out their differences and see their capabilities and limits as well. We find that, while VAEs are easier and faster to train, their results are in general more blurry than the images generated by GANs. These last are more realistic but noisy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goyal, P., Hu, Z., Liang, X., Wang, C., Xing, E.: Nonparametric variational autoencoders for hierarchical representation learning. arXiv:1703.07027 (2017)

  2. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  3. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)

  4. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML, pp. 1278–1286 (2014)

    Google Scholar 

  5. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: DRAW: a recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015)

  6. Bordes, A., Bottou, L., Gallinari, P.: SGD-QN: careful quasi-Newton stochastic gradient descent. J. Mach. Learn. Res. 10, 1737–1754 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  8. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)

    Google Scholar 

  9. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  10. Gu, X., Knutsson, H., Nilsson, M., Eklund, A.: Generating diffusion MRI scalar maps from T1 weighted images using generative adversarial networks. CoRR (2018)

    Google Scholar 

  11. Abbasnejad, M.E., Dick, A., van den Hengel, A.: 2017 IEEE Conference on Computer Vision a (2017)

    Google Scholar 

  12. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5485–5493 (2017)

    Google Scholar 

  13. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network (2016)

    Google Scholar 

  15. Zhao, F., Feng, J., Zhao, J., Yang, W., Yan, S.: Robust lstmautoencoders for face de-occlusion in the wild. IEEE Trans. Image Process. 27(2), 778–790 (2018)

    Article  MathSciNet  Google Scholar 

  16. Press, O., Bar, A., Bogin, B., Berant, J., Wolf, L.: Language generation with recurrent generative adversarial networks without pre-training. arXiv preprint arXiv:1706.01399 (2017)

  17. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: AAAI 2017, pp. 2852–2858 (2017)

    Google Scholar 

  18. Barratt, S., Sharma, R.: A note on the inception score. In: ICML Workshop (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Kaddoury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Kaddoury, M., Mahmoudi, A., Himmi, M.M. (2019). Deep Generative Models for Image Generation: A Practical Comparison Between Variational Autoencoders and Generative Adversarial Networks. In: Renault, É., Boumerdassi, S., Leghris, C., Bouzefrane, S. (eds) Mobile, Secure, and Programmable Networking. MSPN 2019. Lecture Notes in Computer Science(), vol 11557. Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22885-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22884-2

  • Online ISBN: 978-3-030-22885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics