Skip to main content

FLIO Historical Background

  • Chapter
  • First Online:
Fluorescence Lifetime Imaging Ophthalmoscopy
  • 370 Accesses

Abstract

Based on techniques for measuring fluorescence decay times, fluorescence lifetime imaging was developed for scanning laser microscopy (FLIM). This technique was transferred to scanning laser ophthalmoscopy to investigate the metabolic state of the healthy and diseased retina by observation of fundus autofluorescence lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110(5):2641–84.

    Article  CAS  Google Scholar 

  2. Gottling PF. Determination of the time between excitation and emissionfor certain fluorescent solids. Phys Rev. 1923;22:566–73.

    Article  CAS  Google Scholar 

  3. Gaviola E. The dacay-time of dye stuff fluorescence. Ann Phys. 1926;81:681.

    Google Scholar 

  4. Leskovar B, et al. Photon-counting system for subnanosecond fluorescence lifetime measurements. Rev Sci Instrum. 1976;47(9):1113–21.

    Article  Google Scholar 

  5. Lewis C, et al. Measurement of short-lived fluorescence decay using single photon-counting method. Rev Sci Instrum. 1973;44(2):107–14.

    Article  CAS  Google Scholar 

  6. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6.

    Article  CAS  Google Scholar 

  7. Skala MC, et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A. 2007;104(49):19494–9.

    Article  CAS  Google Scholar 

  8. Walsh AJ, et al. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 2013;73(20):6164–74.

    Article  CAS  Google Scholar 

  9. Walsh AJ, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014;74(18):5184–94.

    Article  CAS  Google Scholar 

  10. Walsh AJ, et al. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed. Biomed Opt Express. 2016;7(4):1385–99.

    Article  Google Scholar 

  11. Winkler K, et al. Ultrafast dynamics in the excited state of green fluorescent protein (wt) studied by frequency-resolved femtosecond pump-probe spectroscopy. Phys Chem Chem Phys. 2002;4(6):1072–81.

    Article  CAS  Google Scholar 

  12. Chen Y, Periasamy A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc Res Tech. 2004;63(1):72–80.

    Article  CAS  Google Scholar 

  13. Becker W, et al. Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech. 2004;63(1):58–66.

    Article  CAS  Google Scholar 

  14. Duncan RR, et al. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells. J Microsc. 2004;215:1–12.

    Article  CAS  Google Scholar 

  15. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated-emission – stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19(11):780–2.

    Article  CAS  Google Scholar 

  16. Auksorius E, et al. Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett. 2008;33(2):113–5.

    Article  Google Scholar 

  17. Buckers J, et al. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express. 2011;19(4):3130–43.

    Article  Google Scholar 

  18. Delori FC. Spectrometer for noninvasive measurement of intrinsic fluorescence and reflectance of ocular fundus. Appl Opt. 1994;33(31):7439–52.

    Article  CAS  Google Scholar 

  19. von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol. 1995;79:407–12.

    Article  Google Scholar 

  20. von Rückmann A, Fitzke FW, Bird AC. Clinical application of in vivo imaging of fundus autofluorescence. Investig Ophthalmol. 1995;36(4):238.

    Google Scholar 

  21. von Rückmann A, Fitzke FW, Bird AC. In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol. 1997;115(5):609–15.

    Article  Google Scholar 

  22. von Rückmann A, Fitzke FW, Bird AC. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci. 1997;38(2):478–86.

    Google Scholar 

  23. von Rückmann A, Fitzke FW, Bird AC. Distribution of pigment epithelium autofluorescence in retinal disease state recorded in vivo and its change over time. Graefes Arch Clin Exp Ophthalmol. 1999;237(1):1–9.

    Article  Google Scholar 

  24. von Rückmann A, et al. Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol. 2002;133(6):780–6.

    Article  Google Scholar 

  25. Schmitz-Valckenberg S, et al. Analysis of digital scanning laser ophthalmoscopy fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2002;240(2):73–8.

    Article  Google Scholar 

  26. Schmitz-Valckenberg S, et al. Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2004;45(12):4470–6.

    Article  Google Scholar 

  27. Schmitz-Valckenberg S, et al. Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. Invest Ophthalmol Vis Sci. 2006;47(6):2648–54.

    Article  Google Scholar 

  28. Schmitz-Valckenberg S, et al. Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(1):1–6.

    Article  Google Scholar 

  29. Schmitz-Valckenberg S, et al. Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(10):7640–6.

    Article  Google Scholar 

  30. Bindewald A, et al. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci. 2005;46(9):3309–14.

    Article  Google Scholar 

  31. Bindewald A, et al. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol. 2005;89(7):874–8.

    Article  CAS  Google Scholar 

  32. Einbock W, et al. Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study. Graefes Arch Clin Exp Ophthalmol. 2005;243(4):300–5.

    Article  Google Scholar 

  33. Schweitzer D, et al. Tau-mapping of the autofluorescence of the human ocular fundus. Proc SPIE. 2000;4164:79–89.

    Article  Google Scholar 

  34. Schweitzer D, Kolb A, Hammer M. Autofluorescence lifetime measurements in images of the human ocular fundus. Proc SPIE. 2001;4432:29–39.

    Article  Google Scholar 

  35. Schweitzer D, et al. Basic investigations for 2-dimensional time-resolved fluorescence measurements at the fundus. Int Ophthalmol. 2001;23:399–404.

    Article  CAS  Google Scholar 

  36. Schweitzer D, et al. Zeitaufgelöste Messung der Autofluoreszenz – ein Werkzeug zur Erfassung von Stoffwechselvorgängen am Augenhintergrund. Opthalmologe. 2002;99(10):774–9.

    Article  CAS  Google Scholar 

  37. Schweitzer D, et al. Evaluation of time-resolved autofluorescence images of the ocular fundus. In: Diagnostic optical spectroscopy in biomedicine II. 24–25 June 2003, Munich, Germany. 2003.

    Google Scholar 

  38. Schweitzer D, et al. In vivo measurement of time-resolved autofluorescence at the human fundus. J Biomed Opt. 2004;9(6):1214–22.

    Article  Google Scholar 

  39. Schweitzer D, et al. Towards metabolic mapping of the human retina. Microsc Res Tech. 2007;70(5):410–9.

    Article  CAS  Google Scholar 

  40. Schweitzer D, et al. Interpretation of measurements of dynamic fluorescence of the eye. Boston: SPIE; 2007.

    Book  Google Scholar 

  41. Hammer M, et al. In-vivo and in-vitro investigations of retinal fluorophores in age – related macular degeneration by fluorescence lifetime imaging. In: SPIE Photonics West. 2009, SPIE.

    Google Scholar 

  42. Dysli C, et al. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects. Invest Ophthalmol Vis Sci. 2014;55(4):2106–13.

    Article  Google Scholar 

  43. Dysli C, et al. Fluorescence lifetimes of drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017;58(11):4856–62.

    Article  CAS  Google Scholar 

  44. Dysli C, Wolf S, Zinkernagel MS. Autofluorescence lifetimes in geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57(6):2479–87.

    Article  CAS  Google Scholar 

  45. Sauer L, et al. Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy – a novel approach. Acta Ophthalmol. 2018;96(3):257–66.

    Article  Google Scholar 

  46. Sauer L, et al. Patterns of fundus autofluorescence lifetimes in eyes of individuals with nonexudative age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(4):AMD65–77.

    Article  CAS  Google Scholar 

  47. Schmidt J, et al. Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy. Acta Ophthalmol. 2017;95(1):33–40.

    Article  Google Scholar 

  48. Schweitzer D, et al. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy. J Biomed Opt. 2015;20(6):61106.

    Article  Google Scholar 

  49. Sauer L, et al. Fluorescence lifetime imaging ophthalmoscopy: a novel way to assess macular telangiectasia type 2. Ophthalmol Retina. 2018;2(6):587–98.

    Article  Google Scholar 

  50. Sauer L, et al. Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy. Acta Ophthalmol. 2017;95(5):481–92.

    Article  CAS  Google Scholar 

  51. Sauer L, et al. Fluorescence lifetime imaging ophthalmoscopy (FLIO) of macular pigment. Invest Ophthalmol Vis Sci. 2018;59(7):3094–103.

    Article  CAS  Google Scholar 

  52. Ramm L, et al. Fluorescence lifetime imaging ophthalmoscopy in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):2025–6.

    Article  CAS  Google Scholar 

  53. Solberg Y, et al. Retinal flecks in Stargardt Disease reveal characteristic fluorescence lifetime transition over time. Retina. 2019;39(5):1. https://doi.org/10.1097/IAE.0000000000002519.

    Article  Google Scholar 

  54. Dysli C, et al. Fluorescence lifetime imaging in Stargardt disease: potential marker for disease progression. Invest Ophthalmol Vis Sci. 2016;57(3):832–41.

    Article  CAS  Google Scholar 

  55. Dysli C, Wolf S, Zinkernagel MS. Fluorescence lifetime imaging in retinal artery occlusion. Invest Ophthalmol Vis Sci. 2015;56(5):3329–36.

    Article  Google Scholar 

  56. Dysli C, et al. Fundus autofluorescence lifetimes and central serous chorioretinopathy. Retina. 2017;37(11):2151–61.

    Article  Google Scholar 

  57. Dysli C, et al. Autofluorescence lifetimes in patients with choroideremia identify photoreceptors in areas with retinal pigment epithelium atrophy. Invest Ophthalmol Vis Sci. 2016;57(15):6714–21.

    Article  Google Scholar 

  58. Dysli C, et al. Fundus autofluorescence lifetime patterns in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2018;59(5):1769–78.

    Article  CAS  Google Scholar 

  59. Andersen KM, et al. Characterization of retinitis pigmentosa using fluorescence lifetime imaging ophthalmoscopy (FLIO). Transl Vis Sci Technol. 2018;7(3):20.

    Article  Google Scholar 

  60. Jentsch S, et al. Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta Ophthalmol. 2015;93(4):e241–7.

    Article  CAS  Google Scholar 

  61. Sauer L, et al. Impact of macular pigment on fundus autofluorescence lifetimes. Invest Ophthalmol Vis Sci. 2015;56(8):4668–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammer, M. (2019). FLIO Historical Background. In: Zinkernagel, M., Dysli, C. (eds) Fluorescence Lifetime Imaging Ophthalmoscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-22878-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22878-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22877-4

  • Online ISBN: 978-3-030-22878-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics