Skip to main content

The Two Separate Optical Fibres Approach in Computing with 3NLSE–Domain Optical Solitons

  • Conference paper
  • First Online:
Intelligent Computing (CompCom 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 998))

Included in the following conference series:

  • 1629 Accesses

Abstract

While in the past research was focused on how best to treat computational arrangements when all optical solitons were propagating down a single optical fibre, has been increasingly become apparent that using two separate optical fibres to propagate solitons involved in the same computational arrangement possesses a number of unique properties and offers a number of unique possibilities. In this paper we present this alternative approach to computing involving both first-order and second-order optical solitons in the 3NLS–domain to construct optical soliton gates composed of two individual physical optical fibres and solitonic arrangements propating individually and in parallel, yet forming collectively a single solitonic all-optical logic gate fulfilling all requirements for solitonic gateless computing. More specifically, the focus is on investigating fundamental properties of collisions between first order and second order solitons and on providing proof-of-principle for the feasibility of using collisions between such solitons in the 3NLS–domain that propagate in separate optical fibres for computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakaoukas, A.G., Edwards, J.: Computing in the 3NLS domain using first order solitons. Int. J. Unconventional Comput. 5(6), 489–522 (2009). ISSN 1548-7199

    Google Scholar 

  2. Bakaoukas, A.G., Edwards, J.: Computation in the 3NLS domain using first and second order solitons. Int. J. Unconventional Comput. 5(6), 523–545 (2009). ISSN 1548-7199

    Google Scholar 

  3. Bakaoukas, A.G.: An all–optical soliton FFT computational arrangement in the 3NLSE-domain. In: Unconventional Computation and Natural Computation Conference, UCNC 2016, Manchester, UK, 11–15 July 2016 (Conference Proceedings). Lecture Notes In Computer Science. Springer, Cham (2016). ISBN 978-3-319-41311-2

    Google Scholar 

  4. Bakaoukas, A.G.: An all-optical soliton FFT computational arrangement in the 3NLSE-domain (Extended). Natural Comput. J. (2017). https://doi.org/10.1007/s11047-017-9642-1. Print ISSN 1567-7818, Online ISSN 1572-9796

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrawal, G.P.: Non-Linear Fiber Optics. In: Quantum Electronics–Principles & Applications. Academic Press (1989). ISBN 0-12-045140-9

    Google Scholar 

  6. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadephia (1981)

    Book  Google Scholar 

  7. Hasagawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  8. Toffoli, T.: Reversible computing. In: de Bakker, J. (ed.) Automata, Languages, and Programming. Springer, New York (1980)

    Google Scholar 

  9. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1981)

    Article  MathSciNet  Google Scholar 

  10. Steiglitz, K.: Time-gated Manakov spatial solitons are computationally universal. Phys. Rev. E 63, 016608 (2000)

    Article  Google Scholar 

  11. Zhang, M., Wang, L., Ye, P.: All optical XOR logic gates: technologies and experiment demonstrations. IEEE Opt. Commun. (2005)

    Google Scholar 

  12. Froberg, S.R.: Soliton fusion and steering by the simultaneous launch of two different-colour solitons. Opt. Lett. 16, 1484–1486 (1991)

    Article  Google Scholar 

  13. Hasegawa, A., Tappert, F.D.: Transmision of stationery non-linear optical pulses in dispersive dielectric fibres. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  Google Scholar 

  14. Hasegawa, A., Tappert, F.D.: Transmision of stationery non-linear optical pulses in dispersive dielectric fibres. II. Normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973)

    Article  Google Scholar 

  15. Zabusky, N.J., Kruskal, M.D.: Interaction of ‘Solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 6–9(15), 240–243 (1965)

    Article  Google Scholar 

  16. Herman, R.L.: Soliton propagation in optical fibres (1992). Article that appeared in American Scientist July–August 1992

    Google Scholar 

  17. Lax, P.D.: Integrals of non-linear equations of evolution and solitary waves. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  Google Scholar 

  18. Gardner, C.S., Greene, C.S., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-De Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  19. Zakharov, V.E., Shabat, A.B.: Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in non-linear media. Zh. Eksp. Teor. Fiz. 61, 118–134 (1972). Sov. Phys. JETP, 34, pp. 62–69

    Google Scholar 

  20. Haus, H.A., William, W.: Solitons in optical communications. Rev. Mod. Phys. 68(2), 423–444 (1996)

    Article  Google Scholar 

  21. Snyder, A.W., John Mitchell, D.: Big incoherent solitons. Phys. Rev. Lett. 80, 1422–1424 (1998)

    Article  Google Scholar 

  22. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibres. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  Google Scholar 

  23. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Physics Reports 298, 81–197 (1998)

    Article  Google Scholar 

  24. Preitschopf, C., Thorn, C.B.: The Backlund transform for the Liouville field in a curved background. Phys. Lett. 250B, 79–83 (1990)

    Article  Google Scholar 

  25. Ghafouri-Shiraz, H., Shum, P., Nagata, M.: A novel method for analysis of soliton propagation in optical fibres. IEEE J. Quantum Electron. 31(1), 190–200 (1995)

    Article  Google Scholar 

  26. Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Phys. Rev. Lett. 7, 118 (1961)

    Article  Google Scholar 

  27. Benney, D.J., Newell, A.C.: The propagation of non-linear envelopes. J. Math. Phys. 46, 133–139 (1967). (Name changed to: Studies in Applied Mathematics)

    Article  MathSciNet  Google Scholar 

  28. Goodman, J.W., Leonberger, F.I., Kung, S.Y., Athale, R.A.: Optical interconnections for VLSI systems. In: Proceedings of the IEEE, vol. 72, pp. 850–866 (1984)

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank editors and anonymous reviewers for their valuable and constructive suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios G. Bakaoukas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakaoukas, A.G. (2019). The Two Separate Optical Fibres Approach in Computing with 3NLSE–Domain Optical Solitons. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Intelligent Computing. CompCom 2019. Advances in Intelligent Systems and Computing, vol 998. Springer, Cham. https://doi.org/10.1007/978-3-030-22868-2_20

Download citation

Publish with us

Policies and ethics