Skip to main content

Antimetabolites

  • Chapter
  • First Online:
Treatment of Non-infectious Uveitis
  • 482 Accesses

Abstract

Antimetabolites are the most commonly used immunosuppressive agents used for corticosteroid-sparing control of uveitis. The antimetabolites include azathioprine, leflunomide, methotrexate, mycophenolate mofetil, and mycophenolic acid. The antimetabolites are effective and safe. This chapter will explore the mechanism(s) of action of the antimetabolites, evidence for their use and efficacy in uveitis, and important side effects. The reader will become familiar with the utility of these mainstays of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Esterberg E, Acharya NR. Corticosteroid-sparing therapy: practice patterns among uveitis specialists. J Ophthalmic Inflamm Infect. 2012;2(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  2. Elion GB, Hitchings GH, Vanderwerff H. Antagonists of nucleic acid derivatives. VI. Purines. J Biol Chem. 1951;192(2):505–18.

    CAS  PubMed  Google Scholar 

  3. Lecture EGBN. The purine path to chemotherapy. Biosci Rep. 1989;9(5):509–29.

    Article  Google Scholar 

  4. Hoffmann M, Rychlewski J, Chrzanowska M, Hermann T. Mechanism of activation of an immunosuppressive drug: azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. J Am Chem Soc. 2001;123(26):6404–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu H, Ding L, Zhang F, et al. The impact of glutathione S-transferase genotype and phenotype on the adverse drug reactions to azathioprine in patients with inflammatory bowel diseases. J Pharmacol Sci. 2015;129(2):95–100.

    Article  CAS  PubMed  Google Scholar 

  6. Greenwood AJ, Stanford MR, Graham EM. The role of azathioprine in the management of retinal vasculitis. Eye (Lond). 1998;12(Pt 5):783–8.

    Article  Google Scholar 

  7. Pasadhika S, Kempen JH, Newcomb CW, et al. Azathioprine for ocular inflammatory diseases. Am J Ophthalmol. 2009;148(4):500–9.e502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.

    Article  PubMed  Google Scholar 

  9. Schatz CS, Uzel JL, Leininger L, Danner S, Terzic J, Fischbach M. Immunosuppressants used in a steroid-sparing strategy for childhood uveitis. J Pediatr Ophthalmol Strabismus. 2007;44(1):28–34.

    PubMed  Google Scholar 

  10. Mathews JD, Crawford BA, Bignell JL, Mackay IR. Azathioprine in active chronic iridocyclitis. A double-blind controlled trial. Br J Ophthalmol. 1969;53(5):327–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yazici H, Pazarli H, Barnes CG, et al. A controlled trial of azathioprine in Behcet’s syndrome. N Engl J Med. 1990;322(5):281–5.

    Article  CAS  PubMed  Google Scholar 

  12. Hamuryudan V, Ozyazgan Y, Hizli N, et al. Azathioprine in Behcet’s syndrome: effects on long-term prognosis. Arthritis Rheum. 1997;40(4):769–74.

    Article  CAS  PubMed  Google Scholar 

  13. Andrasch RH, Pirofsky B, Burns RP. Immunosuppressive therapy for severe chronic uveitis. Arch Ophthalmol (Chicago, Ill: 1960). 1978;96(2):247–51.

    Article  CAS  Google Scholar 

  14. Cytotoxic drugs in treatment of nonmalignant diseases. Ann Intern Med. 1972;76(4):619–42.

    Article  Google Scholar 

  15. Casanova MJ, Chaparro M, Domenech E, et al. Safety of thiopurines and anti-TNF-alpha drugs during pregnancy in patients with inflammatory bowel disease. Am J Gastroenterol. 2013;108(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  16. Cleary BJ, Kallen B. Early pregnancy azathioprine use and pregnancy outcomes. Birth Defects Res A Clin Mol Teratol. 2009;85(7):647–54.

    Article  CAS  PubMed  Google Scholar 

  17. Mozaffari S, Abdolghaffari AH, Nikfar S, Abdollahi M. Pregnancy outcomes in women with inflammatory bowel disease following exposure to thiopurines and antitumor necrosis factor drugs: a systematic review with meta-analysis. Hum Exp Toxicol. 2015;34(5):445–59.

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen OH, Maxwell C, Hendel J. IBD medications during pregnancy and lactation. Nat Rev Gastroenterol Hepatol. 2014;11(2):116–27.

    Article  CAS  PubMed  Google Scholar 

  19. Galor A, Jabs DA, Leder HA, et al. Comparison of antimetabolite drugs as corticosteroid-sparing therapy for noninfectious ocular inflammation. Ophthalmology. 2008;115(10):1826–32.

    Article  PubMed  Google Scholar 

  20. Hooper PL, Kaplan HJ. Triple agent immunosuppression in serpiginous choroiditis. Ophthalmology. 1991;98(6):944–51; discussion 951-942

    Article  CAS  PubMed  Google Scholar 

  21. Moore CE. Sympathetic ophthalmitis treated with azathioprine. Br J Ophthalmol. 1968;52(9):688–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hakin KN, Pearson RV, Lightman SL. Sympathetic ophthalmia: visual results with modern immunosuppressive therapy. Eye (Lond). 1992;6(Pt 5):453–5.

    Article  Google Scholar 

  23. Hellmund K, Fruhauf A, Seiler T, Naumann GO. Sympathetic ophthalmia 50 years after penetrating injury. A case report. Klinische Monatsblatter fur Augenheilkunde. 1998;213(3):182–5.

    Article  CAS  PubMed  Google Scholar 

  24. Sisk RA, Davis JL, Dubovy SR, Smiddy WE. Sympathetic ophthalmia following vitrectomy for endophthalmitis after intravitreal bevacizumab. Ocul Immunol Inflamm. 2008;16(5):236–8.

    Article  PubMed  Google Scholar 

  25. Siemasko KF, Chong AS, Williams JW, Bremer EG, Finnegan A. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation. 1996;61(4):635–42.

    Article  CAS  PubMed  Google Scholar 

  26. Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol. 1999;162(4):2095–102.

    CAS  PubMed  Google Scholar 

  27. Robertson SM, Lang LS. Leflunomide: inhibition of S-antigen induced autoimmune uveitis in Lewis rats. Agents Actions. 1994;42(3–4):167–72.

    Article  CAS  PubMed  Google Scholar 

  28. Fang CB, Zhou DX, Zhan SX, et al. Amelioration of experimental autoimmune uveitis by leflunomide in Lewis rats. PLoS One. 2013;8(4):e62071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Xie QB, Zhao Y, Liu Y. Flare up of rheumatoid arthritis associated with Vogt-Koyanagi-Harada syndrome treated with leflunomide. Int J Ophthalmol. 2014;7(5):909–11.

    PubMed  PubMed Central  Google Scholar 

  30. Steigerwalt RD Jr, Bacci S, Valesini G. Severe uveitis successfully treated with leflunomide. Retin Cases Brief Rep. 2007;1(1):54–5.

    Article  PubMed  Google Scholar 

  31. Molina C, Modesto C, Martin-Begue N, Arnal C. Leflunomide, a valid and safe drug for the treatment of chronic anterior uveitis associated with juvenile idiopathic arthritis. Clin Rheumatol. 2013;32(11):1673–5.

    Article  PubMed  Google Scholar 

  32. Bichler J, Benseler SM, Krumrey-Langkammerer M, Haas JP, Hugle B. Leflunomide is associated with a higher flare rate compared to methotrexate in the treatment of chronic uveitis in juvenile idiopathic arthritis. Scand J Rheumatol. 2015;44(4):280–3.

    Article  CAS  PubMed  Google Scholar 

  33. Kremer JM, Genovese MC, Cannon GW, et al. Concomitant leflunomide therapy in patients with active rheumatoid arthritis despite stable doses of methotrexate. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2002;137(9):726–33.

    Article  CAS  PubMed  Google Scholar 

  34. Fairbanks LD, Ruckemann K, Qiu Y, et al. Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem J. 1999;342 (. Pt 1:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kiely PD, Johnson DM. Infliximab and leflunomide combination therapy in rheumatoid arthritis: an open-label study. Rheumatology (Oxford). 2002;41(6):631–7.

    Article  CAS  Google Scholar 

  36. Nurmohamed MT, van Halm VP, Dijkmans BA. Cardiovascular risk profile of antirheumatic agents in patients with osteoarthritis and rheumatoid arthritis. Drugs. 2002;62(11):1599–609.

    Article  CAS  PubMed  Google Scholar 

  37. Erice A. Resistance of human cytomegalovirus to antiviral drugs. Clin Microbiol Rev. 1999;12(2):286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andrassy J, Illner WD, Rentsch M, Jaeger G, Jauch KW, Fischereder M. Leflunomide: a treatment option for ganciclovir-resistant cytomegalovirus infection after renal transplantation. NDT Plus. 2009;2(2):149–51.

    PubMed  PubMed Central  Google Scholar 

  39. Chon WJ, Kadambi PV, Xu C, et al. Use of leflunomide in renal transplant recipients with ganciclovir-resistant/refractory cytomegalovirus infection: a case series from the University of Chicago. Case Rep Nephrol Dial. 2015;5(1):96–105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Verkaik NJ, Hoek RA, van Bergeijk H, et al. Leflunomide as part of the treatment for multidrug-resistant cytomegalovirus disease after lung transplantation: case report and review of the literature. Transpl Infect Dis. 2013;15(6):E243–9.

    Article  CAS  PubMed  Google Scholar 

  41. Waldman WJ, Knight DA, Blinder L, et al. Inhibition of cytomegalovirus in vitro and in vivo by the experimental immunosuppressive agent leflunomide. Intervirology. 1999;42(5–6):412–8.

    Article  CAS  PubMed  Google Scholar 

  42. Heinle RW, Welch AD. Experiments with pteroylglutamic acid and pteroylglutamic acid deficiency in human leukemia. J Clin Invest. 1948;27(4):539.

    CAS  PubMed  Google Scholar 

  43. Cress RH, Deaver NL. Methotrexate in the management of severe psoriasis and arthritis: report of a Case. South Med J. 1964;57:1088–90.

    Article  CAS  PubMed  Google Scholar 

  44. Enderlin M. Experiences with antimetabolite therapy of malignant forms of progressive chronic polyarthritis. Helv Med Acta Suppl. 1966;46:171.

    CAS  PubMed  Google Scholar 

  45. Gross D, Enderlin M, Fehr K. Immunosuppressive therapy of progredient chronic polyarthritis using antimetabolites and cytostatics. Schweiz Med Wochenschr. 1967;97(40):1301–10.

    CAS  PubMed  Google Scholar 

  46. Fosdick WM. Cytotoxic therapy in rheumatoid arthritis. Med Clin North Am. 1968;52(3):747–57.

    Article  CAS  PubMed  Google Scholar 

  47. Wilke WS, Calabrese LH, Scherbel AL. Methotrexate in the treatment of rheumatoid arthritis; pilot study. Cleve Clin Q. 1980;47(4):305–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hall PA, Levison DA. Review: assessment of cell proliferation in histological material. J Clin Pathol. 1990;43(3):184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spina D, Leoncini L, Del Vecchio MT, et al. Low versus high cell turnover in diffusely growing non-Hodgkin’s lymphomas. J Pathol. 1995;177(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  50. Day RO, Furst DE, van Riel PLCM, Bresnihan B. Antirheumatic therapy: actions and outcomes. Basel/Boston/Berlin: Birhäuser Verlag; 2005. ISBN 3-7643-6595-1.

    Google Scholar 

  51. Jurgensen CH, Huber BE, Zimmerman TP, Wolberg G. 3-deazaadenosine inhibits leukocyte adhesion and ICAM-1 biosynthesis in tumor necrosis factor-stimulated human endothelial cells. J Immunol. 1990;144(2):653–61.

    CAS  PubMed  Google Scholar 

  52. Jurgensen CH, Wolberg G, Zimmerman TP. Inhibition of neutrophil adherence to endothelial cells by 3-deazaadenosine. Agents Actions. 1989;27(3–4):398–400.

    Article  CAS  PubMed  Google Scholar 

  53. Nesher G, Moore TL. The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum. 1990;33(7):954–9.

    Article  CAS  PubMed  Google Scholar 

  54. Yukioka K, Wakitani S, Yukioka M, et al. Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J Rheumatol. 1992;19(5):689–92.

    CAS  PubMed  Google Scholar 

  55. Morabito L, Montesinos MC, Schreibman DM, et al. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest. 1998;101(2):295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cronstein BN, Rosenstein ED, Kramer SB, Weissmann G, Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol. 1985;135(2):1366–71.

    CAS  PubMed  Google Scholar 

  57. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest. 1990;85(4):1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jundt JW, Browne BA, Fiocco GP, Steele AD, Mock D. A comparison of low dose methotrexate bioavailability: oral solution, oral tablet, subcutaneous and intramuscular dosing. J Rheumatol. 1993;20(11):1845–9.

    CAS  PubMed  Google Scholar 

  59. Gangaputra S, Newcomb CW, Liesegang TL, et al. Methotrexate for ocular inflammatory diseases. Ophthalmology. 2009;116(11):2188–2198.e2181.

    Article  PubMed  Google Scholar 

  60. Hemady RK, Baer JC, Foster CS. Immunosuppressive drugs in the management of progressive, corticosteroid-resistant uveitis associated with juvenile rheumatoid arthritis. Int Ophthalmol Clin. 1992;32(1):241–52.

    Article  CAS  PubMed  Google Scholar 

  61. Weiss AH, Wallace CA, Sherry DD. Methotrexate for resistant chronic uveitis in children with juvenile rheumatoid arthritis. J Pediatr. 1998;133(2):266–8.

    Article  CAS  PubMed  Google Scholar 

  62. Foeldvari I, Wierk A. Methotrexate is an effective treatment for chronic uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2005;32(2):362–5.

    CAS  PubMed  Google Scholar 

  63. Malik AR, Pavesio C. The use of low dose methotrexate in children with chronic anterior and intermediate uveitis. Br J Ophthalmol. 2005;89(7):806–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heiligenhaus A, Mingels A, Heinz C, Ganser G. Methotrexate for uveitis associated with juvenile idiopathic arthritis: value and requirement for additional anti-inflammatory medication. Eur J Ophthalmol. 2007;17(5):743–8.

    Article  CAS  PubMed  Google Scholar 

  65. Herman RA, Veng-Pedersen P, Hoffman J, Koehnke R, Furst DE. Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis patients. J Pharm Sci. 1989;78(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  66. Prasad S, Tripathi D, Rai MK, Aggarwal S, Mittal B, Agarwal V. Multidrug resistance protein-1 expression, function and polymorphisms in patients with rheumatoid arthritis not responding to methotrexate. Int J Rheum Dis. 2014;17(8):878–86.

    Article  CAS  PubMed  Google Scholar 

  67. Wessels JA, van der Kooij SM, le Cessie S, et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 2007;56(6):1765–75.

    Article  CAS  PubMed  Google Scholar 

  68. Wessels JA, Kooloos WM, De Jonge R, et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 2006;54(9):2830–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sen HN, Chan CC, Byrnes G, Fariss RN, Nussenblatt RB, Buggage RR. Intravitreal methotrexate resistance in a patient with primary intraocular lymphoma. Ocul Immunol Inflamm. 2008;16(1):29–33.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Micsik T, Lorincz A, Gal J, Schwab R, Petak I. MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn Pathol. 2015;10(1):216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Saleh MM, Irshaid YM, Mustafa KN. Methylene tetrahydrofolate reductase genotypes frequencies: association with toxicity and response to methotrexate in rheumatoid arthritis patients. Int J Clin Pharmacol Ther. 2015;53(2):154–62.

    Article  PubMed  CAS  Google Scholar 

  72. Fisher MC, Cronstein BN. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. J Rheumatol. 2009;36(3):539–45.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sotoudehmanesh R, Anvari B, Akhlaghi M, Shahraeeni S, Kolahdoozan S. Methotrexate hepatotoxicity in patients with rheumatoid arthritis. Middle East J Digest Dis. 2010;2(2):104–9.

    CAS  Google Scholar 

  74. Sakthiswary R, Chan GY, Koh ET, Leong KP, Thong BY. Methotrexate-associated nonalcoholic fatty liver disease with transaminitis in rheumatoid arthritis. ScientificWorldJournal. 2014;2014:823763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Jakubovic BD, Donovan A, Webster PM, Shear NH. Methotrexate-induced pulmonary toxicity. Can Respir J. 2013;20(3):153–5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Troeltzsch M, von Blohn G, Kriegelstein S, et al. Oral mucositis in patients receiving low-dose methotrexate therapy for rheumatoid arthritis: report of 2 cases and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(5):e28–33.

    Article  PubMed  Google Scholar 

  77. Morgan SL, Baggott JE, Vaughn WH, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann Intern Med. 1994;121(11):833–41.

    Article  CAS  PubMed  Google Scholar 

  78. Morgan SL, Baggott JE, Vaughn WH, et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1990;33(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  79. Shea B, Swinden MV, Ghogomu ET, et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. J Rheumatol. 2014;41(6):1049–60.

    Article  CAS  PubMed  Google Scholar 

  80. Lee WA, Gu L, Miksztal AR, Chu N, Leung K, Nelson PH. Bioavailability improvement of mycophenolic acid through amino ester derivatization. Pharm Res. 1990;7(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  81. Morris RE, Hoyt EG, Murphy MP, Eugui EM, Allison AC. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T- and B-cell purine synthesis. Transplant Proc. 1990;22(4):1659–62.

    CAS  PubMed  Google Scholar 

  82. Platz KP, Sollinger HW, Hullett DA, Eckhoff DE, Eugui EM, Allison AC. RS-61443 – a new, potent immunosuppressive agent. Transplantation. 1991;51(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  83. Platz KP, Bechstein WO, Eckhoff DE, Suzuki Y, Sollinger HW. RS-61443 reverses acute allograft rejection in dogs. Surgery. 1991;110(4):736–40; discussion 740–731

    CAS  PubMed  Google Scholar 

  84. Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. RS-61443 – a phase I clinical trial and pilot rescue study. Transplantation. 1992;53(2):428–32.

    Article  CAS  PubMed  Google Scholar 

  85. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.

    Article  CAS  PubMed  Google Scholar 

  86. Siepmann K, Huber M, Stubiger N, Deuter C, Zierhut M. Mycophenolate mofetil is a highly effective and safe immunosuppressive agent for the treatment of uveitis : a retrospective analysis of 106 patients. Graefes Arch Clin Exp Ophthalmol. 2006;244(7):788–94.

    Article  CAS  PubMed  Google Scholar 

  87. Doycheva D, Zierhut M, Blumenstock G, Stuebiger N, Deuter C. Long-term results of therapy with mycophenolate mofetil in chronic non-infectious uveitis. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1235–43.

    Article  CAS  PubMed  Google Scholar 

  88. Thorne JE, Jabs DA, Qazi FA, Nguyen QD, Kempen JH, Dunn JP. Mycophenolate mofetil therapy for inflammatory eye disease. Ophthalmology. 2005;112(8):1472–7.

    Article  PubMed  Google Scholar 

  89. Cuchacovich M, Solanes F, Perez C, et al. Mycophenolate Mofetil therapy in refractory inflammatory eye disease. J Ocul Pharmacol Ther. 2016;32(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  90. Filler G, Hansen M, LeBlanc C, et al. Pharmacokinetics of mycophenolate mofetil for autoimmune disease in children. Pediatr Nephrol (Berlin, Germany). 2003;18(5):445–9.

    Google Scholar 

  91. Doycheva D, Deuter C, Stuebiger N, Biester S, Zierhut M. Mycophenolate mofetil in the treatment of uveitis in children. Br J Ophthalmol. 2007;91(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  92. Sobrin L, Christen W, Foster CS. Mycophenolate mofetil after methotrexate failure or intolerance in the treatment of scleritis and uveitis. Ophthalmology. 2008;115(8):1416–1421, 1421.e1411.

    Article  PubMed  Google Scholar 

  93. Kempen JH, Daniel E, Dunn JP, et al. Overall and cancer related mortality among patients with ocular inflammation treated with immunosuppressive drugs: retrospective cohort study. BMJ (Clinical research ed). 2009;339:b2480.

    Article  CAS  Google Scholar 

  94. Bentley R. Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev. 2000;100(10):3801–26.

    Article  CAS  PubMed  Google Scholar 

  95. Doycheva D, Jagle H, Zierhut M, et al. Mycophenolic acid in the treatment of birdshot chorioretinopathy: long-term follow-up. Br J Ophthalmol. 2015;99(1):87–91.

    Article  PubMed  Google Scholar 

  96. Zacharias LC, Damico FM, Kenney MC, et al. In vitro evidence for mycophenolic acid dose-related cytotoxicity in human retinal cells. Retina (Philadelphia, Pa). 2013;33(10):2155–61.

    Article  CAS  Google Scholar 

  97. Franklin JL, Rosenberg HH. Impaired folic acid absorption in inflammatory bowel disease: effects of salicylazosulfapyridine (Azulfidine). Gastroenterology. 1973;64(4):517–25.

    Article  CAS  PubMed  Google Scholar 

  98. Selhub J, Dhar GJ, Rosenberg IH. Inhibition of folate enzymes by sulfasalazine. J Clin Invest. 1978;61(1):221–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baum CL, Selhub J, Rosenberg IH. Antifolate actions of sulfasalazine on intact lymphocytes. J Lab Clin Med. 1981;97(6):779–84.

    CAS  PubMed  Google Scholar 

  100. Rhodes JM, Jewell DP. Motility of neutrophils and monocytes in Crohn’s disease and ulcerative colitis. Gut. 1983;24(1):73–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Benitez-Del-Castillo JM, Garcia-Sanchez J, Iradier T, Banares A. Sulfasalazine in the prevention of anterior uveitis associated with ankylosing spondylitis. Eye (Lond). 2000;14(Pt 3A):340–3.

    Article  Google Scholar 

  102. Munoz-Fernandez S, Hidalgo V, Fernandez-Melon J, et al. Sulfasalazine reduces the number of flares of acute anterior uveitis over a one-year period. J Rheumatol. 2003;30(6):1277–9.

    CAS  PubMed  Google Scholar 

  103. Huang JL, Hung IJ, Hsieh KH. Sulphasalazine therapy in chronic uveitis of children with chronic arthritis. Asian Pac J Allergy Immunol. 1997;15(2):71–5.

    CAS  PubMed  Google Scholar 

  104. Dev S, McCallum RM, Jaffe GJ. Methotrexate treatment for sarcoid-associated panuveitis. Ophthalmology. 1999;106(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  105. Rathinam SR, Babu M, Thundikandy R, et al. A randomized clinical trial comparing methotrexate and mycophenolate mofetil for noninfectious uveitis. Ophthalmology. 2014;121(10):1863–70.

    Article  PubMed  Google Scholar 

  106. Kaklamani VG, Kaklamanis PG. Treatment of Behcet’s disease – an update. Semin Arthritis Rheum. 2001;30(5):299–312.

    Article  CAS  PubMed  Google Scholar 

  107. Arcinue CA, Radwan A, Lebanan MO, Foster CS. Comparison of two different combination immunosuppressive therapies in the treatment of Vogt-Koyonagi-Harada syndrome. Ocul Immunol Inflamm. 2013;21(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  108. Silman AJ, Petrie J, Hazleman B, Evans SJ. Lymphoproliferative cancer and other malignancy in patients with rheumatoid arthritis treated with azathioprine: a 20 year follow up study. Ann Rheum Dis. 1988;47(12):988–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Penn I. Cancers complicating organ transplantation. N Engl J Med. 1990;323(25):1767–9.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Antirheumatic therapy: actions and outcomes. In: Day RO, Furst DE, van Riel PLCM, Bresnihan B, editors. Progress in inflammation research. ISBN 3-7643-6595-1. Basel/Boston/Berlin: Birhäuser Verlag. UCSF ID RM 405 A64; 2005.

    Google Scholar 

  • Cronstein BN, Bertino JR, editors. Milestones in Drug Therapy. Methotrexate. Basel/Boston/Berlin: Birkhäuser Verlag; 2000. RM 666 M52 M48 2000.

    Google Scholar 

  • Rainsford KD, editor. CRC anti-inflammatory and anti-rheumatic drugs volume III. Boca Raton: CRC Press; 1985. 33431. RM405 A58 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Gonzales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzales, J.A. (2019). Antimetabolites. In: Lin, P., Suhler, E. (eds) Treatment of Non-infectious Uveitis. Springer, Cham. https://doi.org/10.1007/978-3-030-22827-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22827-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22825-5

  • Online ISBN: 978-3-030-22827-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics