Advertisement

A Novel Memristor-CMOS Hybrid Full-Adder and Its Application

  • Hui Yang
  • Shukai DuanEmail author
  • Lidan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11555)

Abstract

Memristor is a nano-scale component with information storage capability and binary characteristics. The memristive logic circuit composed of the structure is simple in structure and complete in logic function, and can be applied to logic operation and storage. However, the existing memristive logic circuit has a single function, the component size is too large, and the delay step is too much, so that the circuit efficiency is low. This paper proposes a novel memristor-CMOS hybrid full adder. Compared with MAD Gates, IMPLY logic circuit significantly reduces the operation steps, the circuit has no time delay, and optimizes the requirements of circuit components. Based on the proposed circuit, a novel N-bit subtractor is designed, which can be combined with the full-adder to implement composite logic operations.

Keywords

Memristor Hybrid-CMOS Full-adder Subtractor 

References

  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)Google Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)Google Scholar
  3. 3.
    Williams, R.: How We Found the Missing Memristor. IEEE Press (2008)Google Scholar
  4. 4.
    Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2008)Google Scholar
  5. 5.
    Vourkas, I., Batsos, A., Sirakouli, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theory Appl. 43(5), 553–565 (2015)Google Scholar
  6. 6.
    Emara, A., Ghoneima, M., El-Dessouky, M.: Differential 1T2M memristor memory cell for single/multi-bit RRAM modules. In: Computer Science and Electronic Engineering Conference, pp. 69–72. IEEE, Colchester (2014)Google Scholar
  7. 7.
    Shaarawy, N., Ghoneima, M., Radwan, A.G.: 2T2M memristor-based memory cell for higher stability RRAM modules. In: 2015 IEEE International Symposium on Circuits and Systems, pp. 1418–1421 (2015)Google Scholar
  8. 8.
    Luo, L., Hu, X., Duan, S., Dong, Z., Wang, L.: Multiple memristor series-parallel connections with use in synaptic circuit design. IET Circ. Devices Syst. 11(2), 123–134 (2017)Google Scholar
  9. 9.
    Jiang, Z., Duan, S., Wang, L., et al.: A threshold adaptive memristor model analysis with application in image storage. In: International Conference on Information Science and Technology, pp. 449–454. IEEE, Jeju Island (2015)Google Scholar
  10. 10.
    Duan, S., Hu, X., Wang, L., et al.: Memristor-based RRAM with applications. Sci. China (Inf. Sci.) 55(6), 1446–1460 (2012)Google Scholar
  11. 11.
    Hu, X., Duan, S., Wang, L.: Memristive multilevel memory with applications in audio signal storage. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011. LNCS (LNAI), vol. 7002, pp. 228–235. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23881-9_29Google Scholar
  12. 12.
    Zhang, Y., Shen, Y., Wang, X., et al.: A novel design for memristor-based logic switch and crossbar circuits. IEEE Trans. Circ. Syst. I Regul. Pap. 62(5), 1402–1411 (2015)Google Scholar
  13. 13.
    Zhang, Y., Shen, Y., Wang, X., et al.: A novel design for a memristor-based or gate. IEEE Trans. Circ. Syst. II Express Briefs 62(8), 781–785 (2015)Google Scholar
  14. 14.
    Sarwar, S.S., Saqueb, S.A.N., Quaiyum, F., et al.: Memristor-based nonvolatile random access memory: hybrid architecture for low power compact memory design. IEEE Access 1(1), 29–34 (2013)Google Scholar
  15. 15.
    Borghetti, J., Snider, G.S., Kuekes, P.J., et al.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873 (2011)Google Scholar
  16. 16.
    Kvatinsky, S., Satat, G., Wald, N., et al.: Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. Syst. 22(10), 2054–2066 (2014)Google Scholar
  17. 17.
    Guckert, L., Swartzlander, E.E.: MAD gates—memristor logic design using driver circuitry. IEEE Trans. Circ. Syst. II Express Briefs 64(2), 171–175 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Southwest UniversityChongqingChina
  2. 2.Brain-Inspired Computing and Intelligent Control of Chongqing Key LabChongqingChina

Personalised recommendations