Skip to main content

Bus Arrival Time Prediction with LSTM Neural Network

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11554)


Arrival time is a key aspect of passenger information systems. Provision of accurate bus arrival information is essential for delivering an attractive service and necessary to passengers for reducing their waiting time and bus stops and choosing alternative routes. Recently, the same information is used in smart-phone trip planners. In this paper, we explore an LSTM neural network model for bus arrival time prediction. We take into account heterogeneous information about the transport situation, directly or indirectly affecting the prediction travel time. We evaluate the proposed models with bus operation data from Samara, Russia. Evaluation results show that the proposed model outperforms some typical prediction algorithms.


  • Arrival time prediction
  • Artificial neural network
  • Long short-term memory
  • Intelligent transportation systems

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Agafonov, A., Myasnikov, V.: An adaptive algorithm for public transport arrival time prediction based on hierarhical regression, vol. 2015-October, pp. 2776–2781 (2015)

    Google Scholar 

  2. Agafonov, A., Sergeev, A., Chernov, A.: Forecasting of the motion parameters of city transport by satellite monitoring data. Comput. Opt. 36(3), 453–458 (2012)

    Google Scholar 

  3. Chang, H., Park, D., Lee, S., Lee, H., Baek, S.: Dynamic multi-interval bus travel time prediction using bus transit data. Transportmetrica 6(1), 19–38 (2010)

    Google Scholar 

  4. Chen, M., Liu, X., Xia, J., Chien, S.: A dynamic bus-arrival time prediction model based on APC data. Comput.-Aided Civil Infrastruct. Eng. 19(5), 364–376 (2004)

    Google Scholar 

  5. Chien, S.J., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial neural networks. J. Transp. Eng. 128(5), 429–438 (2002)

    Google Scholar 

  6. Chien, S.J., Kuchipudi, C.: Dynamic travel time prediction with real-time and historic data. J. Transp. Eng. 129(6), 608–616 (2003)

    Google Scholar 

  7. Chollet, F., et al.: Keras (2015).

  8. Du, S., Li, T., Gong, X., Yu, Z., Huang, Y., Horng, S.J.: A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning. arXiv e-prints arXiv:1803.02099, March 2018

  9. Duan, Y., Lv, Y., Wang, F.Y.: Travel time prediction with LSTM neural network, pp. 1053–1058 (2016)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  11. Jeong, R., Rilett, L.: Prediction model of bus arrival time for real-time applications. Transp. Res. Rec. 1927, 195–204 (2005)

    Google Scholar 

  12. Kumar, V., Kumar, B., Vanajakshi, L., Subramanian, S.: Comparison of model based and machine learning approaches for bus arrival time prediction, p. 14 (2014)

    Google Scholar 

  13. Petersen, N., Rodrigues, F., Pereira, F.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019)

    Google Scholar 

  14. Smith, B., Williams, B., Oswald, R.: Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C: Emerg. Technol. 10(4), 303–321 (2002)

    Google Scholar 

  15. Sun, D., Luo, H., Fu, L., Liu, W., Liao, X., Zhao, M.: Predicting bus arrival time on the basis of global positioning system data. Transp. Res. Rec. 2034, 62–72 (2007)

    Google Scholar 

  16. Van Hinsbergen, C., Van Lint, J., Van Zuylen, H.: Bayesian committee of neural networks to predict travel times with confidence intervals. Transp. Res. Part C: Emerg. Technol. 17(5), 498–509 (2009)

    Google Scholar 

  17. Xu, H., Ying, J.: Bus arrival time prediction with real-time and historic data. Cluster Comput. 20(4), 3099–3106 (2017)

    Google Scholar 

  18. Yang, M., Chen, C., Wang, L., Yan, X., Zhou, L.: Bus arrival time prediction using support vector machine with genetic algorithm. Neural Netw. World 26(3), 205–217 (2016)

    Google Scholar 

  19. Yu, B., Yang, Z.Z., Chen, K., Yu, B.: Hybrid model for prediction of bus arrival times at next station. J. Adv. Transp. 44(3), 193–204 (2010)

    Google Scholar 

  20. Yu, B., Yang, Z.Z., Yao, B.Z.: Bus arrival time prediction using support vector machines. J. Intell. Transp. Syst.: Technol. Plan. Oper. 10(4), 151–158 (2006)

    Google Scholar 

  21. Zhu, T., Ma, F., Ma, T., Li, C.: The prediction of bus arrival time using global positioning system data and dynamic traffic information (2011)

    Google Scholar 

Download references


The work was supported by the Ministry of Science and Higher Education of the Russian Federation (unique project identifier RFMEFI57518X0177).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anton Agafonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agafonov, A., Yumaganov, A. (2019). Bus Arrival Time Prediction with LSTM Neural Network. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22795-1

  • Online ISBN: 978-3-030-22796-8

  • eBook Packages: Computer ScienceComputer Science (R0)