Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 242))

Abstract

This chapter discusses the connectivity in freeway vehicular ad hoc networks (VANETs). Estimating connectivity is necessary to measure the effectiveness of vehicular communication. The connection duration between any two vehicles is a function of their relative velocity, and the connectivity probability is a function of the headway distribution. Both are functions of the traffic regime. We begin by presenting some recent research results in estimating the connectivity probability and the communication duration between vehicles in different traffic conditions, namely single-lane same direction traffic. We then extend the results to other scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, N., Cheng, N., Zhang, N., Shen, X., Mark, J.W.: Connected vehicles: solutions and challenges. IEEE Internet Things J. 1(4), 289–299 (2014). https://doi.org/10.1109/JIOT.2014.2327587

    Article  Google Scholar 

  2. Campolo, C., Molinaro, A., Vinel, A., Zhang, Y.: Modeling and enhancing infotainment service access in vehicular networks with dual-radio devices. Veh. Commun. 6, 7–16 (2016)

    Google Scholar 

  3. Toor, Y., Muhlethaler, P., Laouiti, A., La Fortelle, A.D.: Vehicle ad hoc networks: applications and related technical issues. IEEE Commun. Surv. Tutor. 10(3), 74–88 (2008). Third Quarter

    Article  Google Scholar 

  4. Shrestha, R., Bajracharya, R., Nam, S.Y.: Challenges of future VANET and cloud-based approaches. Wireless Commun. Mob. Comput. 2018, Article ID 5603518. https://doi.org/10.1155/2018/5603518

    Article  Google Scholar 

  5. Cheng, L., Panichpapiboon, S.: Effects of intervehicle spacing distributions on connectivity of VANET: a case study from measured highway traffic. IEEE Commun. Mag. 50(10), 90–97 (2012)

    Article  Google Scholar 

  6. Panichpapiboon, S., Pattara-Atikom, W.: Connectivity requirements for self-organizing traffic information systems. IEEE Trans. Veh. Technol. 57(6), 3333–3340 (2008)

    Article  Google Scholar 

  7. Panichpapiboon, S., Pattara-Atikom, W.: Connectivity requirements for a self-organizing vehicular network. In: 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, pp. 968–972 (2008). https://doi.org/10.1109/ivs.2008.4621219

  8. Busson, A.: Analysis and simulation of a message dissemination algorithm for VANET. Int. J. Commun. Syst. (2011)

    Google Scholar 

  9. Gramaglia, M., Trullols-Cruces, O., Naboulsi, D., Fiore, M., Calderon, M.: Mobility and connectivity in highway vehicular networks: a case study in Madrid. Comput. Commun. 78, 28–44 (2015)

    Article  Google Scholar 

  10. Naboulsi, D., Fiore, M.: Characterizing the instantaneous connectivity of large-scale urban vehicular networks. IEEE Trans. Mob. Comput. 16(5), 1272–1286 (2017). https://doi.org/10.1109/TMC.2016.2591527

    Article  Google Scholar 

  11. IEEE P802.11p/D6.01, Part 11: wireless LAN medium access control (MAC) and physical layer (phy) specifications-amendment 7: wireless access in vehicular environments (2009)

    Google Scholar 

  12. IEEE Std, IEEE standard for wireless access in vehicular environments (WAVE) multi-channel operation (2010)

    Google Scholar 

  13. IEEE family of standards for wireless access in vehicular environments (WAVE)—IEEE 1609 series. IEEE (2013)

    Google Scholar 

  14. Sou, S.I., Tonguz, O.K.: Enhancing VANET connectivity through roadside units on highways. IEEE Trans. Veh. Technol. 60(8), 3586–3602 (2011). https://doi.org/10.1109/TVT.2011.2165739

    Article  Google Scholar 

  15. Aslam, B., Amjad, F., Zou, C.: Optimal roadside units placement in urban areas for vehicular networks. In: Proceedings of the IEEE Symposium on Computers and Communications, pp. 423–429 (2012)

    Google Scholar 

  16. Durrani, S., Zhou, X., Chandra, A.: Effect of vehicle mobility on connectivity of vehicular ad hoc networks. In: 2010 IEEE 72nd Vehicular Technology Conference - Fall, Ottawa, ON, pp. 1–5 (2010). https://doi.org/10.1109/vetecf.2010.5594505

  17. Kaiwartya, O., Abdullah, A.H., Cao, Y., Altameem, A., Prasad, M., Lin, C.T., Liu, X.: Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 4, 5356–5373 (2016)

    Article  Google Scholar 

  18. Yang, F., Wang, S., Li, J., Liu, Z., Sun, Q.: An overview of internet of vehicles. China Commun. 11(10), 1–15 (2014)

    Article  Google Scholar 

  19. Abuelenin, S.M., Abul-Magd, A.Y.: Empirical study of traffic velocity distribution and its effect on VANETs connectivity. In: 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, pp. 391–395 (2014). https://doi.org/10.1109/iccve.2014.7297577

  20. Abuelenin, S.M., Abul-Magd, A.Y.: Effect of minimum headway distance on connectivity of VANETs. AEU-Int. J. Electron. Commun. 69(5), 867–871 (2015)

    Article  Google Scholar 

  21. Abuelenin, S.M., Abul-Magd, A.Y.: Corrigendum to effect of minimum headway distance on connectivity of VANETs. AEU-Int. J. Electron. Commun. 83, 566 (2018)

    Article  Google Scholar 

  22. Nagel, R.: The effect of vehicular distance distributions and mobility on VANET communications. In: 2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, pp. 1190–1194 (2010). https://doi.org/10.1109/ivs.2010.5547971

  23. Kerner, B.S.: The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory. Springer, Berlin (2004)

    Google Scholar 

  24. Abul-Magd, A.Y.: Modeling highway-traffic headway distributions using superstatistics. Phys. Rev. E 76(5), 057101 (2007)

    Article  Google Scholar 

  25. Luttinen, R.: Statistical Analysis of Vehicle Time Headways. Teknillinen korkeakoulu, Otaniemi (1996)

    Google Scholar 

  26. Li, L., Chen, X.M.: Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: a survey. Transp. Res. Part C: Emerg. Technol. 76, 170–188 (2017)

    Article  Google Scholar 

  27. Abuelenin, S.M., Abul-Magd, A.Y.: Moment analysis of highway-traffic clearance distribution. IEEE Trans. Intell. Transp. Syst. 16(5), 2543–2550 (2015). https://doi.org/10.1109/TITS.2015.2412117

    Article  Google Scholar 

  28. Ayres, T.J., Li, L., Schleuning, D., Young, D.: Preferred time-headway of highway drivers. In: ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585), Oakland, CA, pp. 826–829 (2001)

    Google Scholar 

  29. Krbalek, M., Seba, P.: The statistical properties of the city transport in cuernavaca (Mexico) and random matrix ensembles. J. Phys. A 33(L229–L234) (2000)

    Article  Google Scholar 

  30. Krbálek, M., Kittanová, K.: Lattice thermodynamic model for vehicular congestions. Procedia-Soc. Behav. Sci. 20, 398–405 (2011)

    Article  Google Scholar 

  31. Krbálek, M.: Theoretical predictions for vehicular headways and their clusters. J. Phys. A: Math. Theor. 46(44), 445101 (2013)

    Article  MathSciNet  Google Scholar 

  32. http://bhl.path.berkeley.edu/

  33. Lo, C.F.: The sum and difference of two lognormal random variables. J. Appl. Math. (2012)

    Google Scholar 

  34. Gumbel, E.J.: Statistics of Extremes. Courier Dover Publications (2012)

    Google Scholar 

  35. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. Tata McGraw-Hill Education (2002)

    Google Scholar 

  36. Nadarajah, S.: Linear combination of Gumbel random variables. Stoch. Env. Res. Risk Assess. 21(3), 283–286 (2007)

    Article  MathSciNet  Google Scholar 

  37. Beaulieu, N.C., Rajwani, F.: Highly accurate simple closed-form approximations to lognormal sum distributions and densities. IEEE Commun. Lett. 8(12), 709–711 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif M. Abuelenin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abuelenin, S.M., Abul-Magd, A.Y. (2020). Studying Connectivity Probability and Connection Duration in Freeway VANETs. In: Elhoseny, M., Hassanien, A. (eds) Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System Networks. Studies in Systems, Decision and Control, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-030-22773-9_3

Download citation

Publish with us

Policies and ethics