Skip to main content

Applying NSGA-II to a Multiple Objective Dial a Ride Problem

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11540)

Abstract

In Dial-a-Ride Problem (DARP) customers request from an operator a transportation service from a pick-up to a drop-off place. Depending on the formulation, the problem can address several constraints, being associated with problems such as door-to-door transportation for elderly/disabled people or occasional private drivers. This paper addresses the latter case where a private drivers company transports passengers in a heterogeneous fleet of saloons, estates, people carriers and minibuses. The problem is formulated as a multiple objective DARP which tries to minimize the total distances, the number of empty seats, and the wage differential between the drivers. To solve the problem a Non-dominated Sorting Genetic Algorithm-II is hybridized with a local search. Results for daily scheduling are shown.

Keywords

  • Dial a Ride
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
  • Multiple objective optimization
  • Private drivers scheduling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22750-0_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-22750-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Attanasio, A., Cordeau, J.F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30(3), 377–387 (2004)

    CrossRef  Google Scholar 

  2. Berbeglia, G., Cordeau, J.F., Laporte, G.: A hybrid tabu search and constraint programming algorithm for the dynamic dial-a-ride problem. INFORMS J. Comput. 24(3), 343–355 (2012). https://doi.org/10.1287/ijoc.1110.0454

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Chevrier, R., Liefooghe, A., Jourdan, L., Dhaenens, C.: Solving a dial-a-ride problem with a hybrid evolutionary multi-objective approach: Application to demand responsive transport. Appl. Soft Comput. 12(4), 1247–1258 (2012). https://doi.org/10.1016/j.asoc.2011.12.014

    CrossRef  Google Scholar 

  4. Cordeau, J.F.: A branch-and-cut algorithm for the dial-a-ride problem. Oper. Res. 54(3), 573–586 (2006)

    MathSciNet  CrossRef  Google Scholar 

  5. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann. Oper. Res. 153(1), 29–46 (2007)

    MathSciNet  CrossRef  Google Scholar 

  6. Cubillos, C., Rodriguez, N., Crawford, B.: A study on genetic algorithms for the DARP problem. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 498–507. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73053-8_50

    CrossRef  Google Scholar 

  7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  9. Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics, vol. 2. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5

    CrossRef  MATH  Google Scholar 

  10. Haddadene, S.A., Labadie, N., Prodhon, C.: NSGA-II enhanced with a local search for the vehicle routing problem with time windows and synchronization constraints. IFAC-PapersOnLine 49(12), 1198–1203 (2016)

    CrossRef  Google Scholar 

  11. Hadka, D.: Platypus - Multiobjective Optimization in Python (2015). https://platypus.readthedocs.io. Accessed 08 Feb 2019

  12. Ho, S.C., Szeto, W., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey of dial-a-ride problems: literature review and recent developments. Trans. Res. Part B Methodol. 111, 395–421 (2018). https://doi.org/10.1016/j.trb.2018.02.001

    CrossRef  Google Scholar 

  13. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  14. Issaoui, B., Khelifi, L., Zidi, I., Zidi, K., Ghédira, K.: A contribution to the resolution of stochastic dynamic dial a ride problem with NSGA-II. In: 13th International Conference on Hybrid Intelligent Systems (HIS 2013), pp. 54–59 (2013)

    Google Scholar 

  15. Lai, M., Tong, X.: A metaheuristic method for vehicle routing problem based on improved ant colony optimization and tabu search. J. Ind. Manage. Optim. 8(2), 469–484 (2012). https://doi.org/10.3934/jimo.2012.8.469

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Luxen, D., Vetter, C.: Real-time routing with openstreetmap data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2011, pp. 513–516. ACM, New York (2011). https://doi.org/10.1145/2093973.2094062

  17. Männel, D., Bortfeldt, A.: A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints. Eur. J. Oper. Res. 254(3), 840–858 (2016)

    MathSciNet  CrossRef  Google Scholar 

  18. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  19. Morais, A.C., Torres, L., Dias, T.G., Cardoso, P.J.S., Fernandes, H.: A combined data mining and tabu search approach for single customer dial-a-ride problem. In: 7th International Conference on Metaheuristics and Nature Inspired Computing, Marrakech, Morocco, pp. 121–123, October 2018

    Google Scholar 

  20. Murata, T., Itai, R.: Multi-objective vehicle routing problems using two-fold EMO algorithms to enhance solution similarity on non-dominated solutions. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 885–896. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_61

    CrossRef  MATH  Google Scholar 

  21. OpenStreetMap contributors: Planet dump (2017). https://planet.osm.org. https://www.openstreetmap.org

  22. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems. Journal für Betriebswirtschaft 58(1), 21–51 (2008)

    CrossRef  Google Scholar 

  23. Qu, Y., Bard, J.F.: A branch-and-price-and-cut algorithm for heterogeneous pickup and delivery problems with configurable vehicle capacity. Transp. Sci. 49(2), 254–270 (2014)

    CrossRef  Google Scholar 

  24. Riquelme, N., Lücken, C.V., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11, October 2015. https://doi.org/10.1109/CLEI.2015.7360024

  25. Ropke, S., Cordeau, J.F., Laporte, G.: Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks Int. J. 49(4), 258–272 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Salhi, S., Imran, A., Wassan, N.A.: The multi-depot vehicle routing problem with heterogeneous vehicle fleet: formulation and a variable neighborhood search implementation. Comput. Oper. Res. 52, 315–325 (2014)

    MathSciNet  CrossRef  Google Scholar 

  27. Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R.: A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 37(11), 1899–1911 (2010). https://doi.org/10.1016/j.cor.2009.10.011

    CrossRef  MATH  Google Scholar 

  28. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM (2014)

    Google Scholar 

  29. Tripathy, T., Nagavarapu, S.C., Azizian, K., Ramasamy Pandi, R., Dauwels, J.: Solving dial-a-ride problems using multiple ant colony system with fleet size minimisation. In: Chao, F., Schockaert, S., Zhang, Q. (eds.) UKCI 2017. AISC, vol. 650, pp. 325–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66939-7_28

    CrossRef  Google Scholar 

  30. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT), project LARSyS (UID/EEA/50009/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. S. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Guerreiro, P.M.M., Cardoso, P.J.S., Fernandes, H.C.L. (2019). Applying NSGA-II to a Multiple Objective Dial a Ride Problem. In: , et al. Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science(), vol 11540. Springer, Cham. https://doi.org/10.1007/978-3-030-22750-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22750-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22749-4

  • Online ISBN: 978-3-030-22750-0

  • eBook Packages: Computer ScienceComputer Science (R0)