Advertisement

Estuarine Light Attenuation Modelling Towards Improved Management of Coastal Fisheries

  • Marko TosicEmail author
  • Flávio Martins
  • Serguei Lonin
  • Alfredo Izquierdo
  • Juan Darío Restrepo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11539)

Abstract

The ecosystem function of local fisheries holds great societal importance in the coastal zone of Cartagena, Colombia, where coastal communities depend on artisanal fishing for their livelihood and health. These fishing resources have declined sharply in recent decades partly due to issues of coastal water pollution. Mitigation strategies to reduce pollution can be better evaluated with the support of numerical hydrodynamic models. To model the hydrodynamics and water quality in Cartagena Bay, significant consideration must be dedicated to the process of light attenuation, given its importance to the bay’s characteristics of strong vertical stratification, turbid surface water plumes, algal blooms and hypoxia. This study uses measurements of total suspended solids (TSS), turbidity, chlorophyll-a (Chla) and Secchi depth monitored in the bay monthly over a 2-year period to calculate and compare the short-wave light extinction coefficient (Kd) according to nine different equations. The MOHID-Water model was used to simulate the bay’s hydrodynamics and to compare the effect of three different Kd values on the model’s ability to reproduce temperature profiles observed in the field. Simulations using Kd values calculated by equations that included TSS as a variable produced better results than those of an equation that included Chla as a variable. Further research will focus on evaluating other Kd calculation methods and comparing these results with simulations of different seasons. This study contributes valuable knowledge for eutrophication modelling which would be beneficial to coastal zone management in Cartagena Bay.

Keywords

Light attenuation 3D hydrodynamic modelling Tropical estuaries Coastal management 

Notes

Acknowledgements

This work was carried out with the aid of a grant from the International Development Research Centre, Ottawa, Canada (grant number 108747-001). Financial support was also provided by EAFIT University, Corporación Autónoma Regional del Canal del Dique (CARDIQUE; agreement number 15601), as well as a scholarship granted to the lead author by the Erasmus Mundus Doctoral Programme in Marine and Coastal Management (MACOMA).

References

  1. 1.
    Tosic, M., Restrepo, J.D., Lonin, S., Izquierdo, A., Martins, F.: Water and sediment quality in Cartagena Bay, Colombia: seasonal variability and potential impacts of pollution. Estuar. Coast. Shelf Sci. 216, 187–203 (2019). ISSN 0272-7714CrossRefGoogle Scholar
  2. 2.
    Escobar, R., Luna-Acosta, A., Caballero, S.: DNA barcoding, fisheries and communities: What do we have? Science and local knowledge to improve resource management in partnership with communities in the Colombian Caribbean. Mar. Policy 99, 407–413 (2019)CrossRefGoogle Scholar
  3. 3.
    Olivero-Verbel, J., Caballero-Gallardo, K., Torres-Fuentes, N.: Assessment of mercury in muscle of fish from Cartagena Bay, a tropical estuary at the north of Colombia. Int. J. Environ. Health Res. 19(5), 343–355 (2009)CrossRefGoogle Scholar
  4. 4.
    Restrepo, J.D., Tosic, M. (eds.): Executive summary of the Project Basin Sea Interactions with Communities. EAFIT University, Medellín, June 2017, 31 p. (2017). http://www.basic-cartagena.org/boletines/BASIC%20Cartagena%20-%20Resumen%20Ejecutivo.pdf
  5. 5.
    Tosic, M., Restrepo, J.D., Izquierdo, A., Lonin, S., Martins, F., Escobar, R.: An integrated approach for the assessment of land-based pollution loads in the coastal zone demonstrated in Cartagena Bay, Colombia. Estuar. Coast. Shelf Sci. 211, 217–226 (2018)CrossRefGoogle Scholar
  6. 6.
    Fabricius, K.E.: Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50(2), 125–146 (2005)CrossRefGoogle Scholar
  7. 7.
    Díaz, R.J., Rosenberg, R.: Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995)Google Scholar
  8. 8.
    Correll, D.L.: The role of phosphorus in the eutrophication of receiving waters: a review. J. Environ. Qual. 27(2), 261–266 (1998)CrossRefGoogle Scholar
  9. 9.
    MinSalud - Ministerio de Salud: Decreto No. 1594 del 26 de junio. Por el cual se reglamenta parcialmente el Título I de la Ley 9 de 1979, así como el Capítulo II del Título VI - Parte III - Libro II y el Título III de la Parte III - Libro I - del Decreto - Ley 2811 de 1974 en cuanto a usos del agua y residuos líquidos, 61 p. (1984)Google Scholar
  10. 10.
    Newton, A., Mudge, S.M.: Lagoon-sea exchanges, nutrient dynamics and water quality management of the Ria Formosa (Portugal). Estuar. Coast. Shelf Sci. 62, 405–414 (2005)CrossRefGoogle Scholar
  11. 11.
    Tosic, M., Martins, F., Lonin, S., Izquierdo, A., Restrepo, J.D.: Hydrodynamic modelling of a polluted tropical bay: assessment of anthropogenic impacts on freshwater runoff and estuarine water renewal. J. Environ. Manag. 236, 695–714 (2019)CrossRefGoogle Scholar
  12. 12.
    NC (Oficina Nacional de Normalización de Cuba): Evaluación de los objetos hidricos de uso pesquero. Norma Cubana 25/1999. Ciudad de La Habana, Cuba (1999)Google Scholar
  13. 13.
    Tuchkovenko, Y., Lonin, S.: Mathematical model of the oxygen regime of Cartagena Bay. Ecol. Model. 165(1), 91–106 (2003). ISSN 0304-3800CrossRefGoogle Scholar
  14. 14.
    Cañón-Páez, M.L., Tous, G., Lopez, K., Lopez, R., Orozco, F.: Variación espaciotemporal de los componentes fisicoquímico, zooplanctónico y microbiológico en la Bahía de Cartagena. Boletín Científico CIOH 25, 120–134 (2007)Google Scholar
  15. 15.
    Lonin, S.: Cálculo de la transparencia del agua en la bahía de Cartagena. Boletín Científico CIOH 18, 85–92 (1997)CrossRefGoogle Scholar
  16. 16.
    Tuchkovenko, Y., Lonin, S., Calero, L.A.: Modelación ecológica de las bahías de Cartagena y Barbacoas bajo la influencia del Canal del Dique. Avances en Recursos Hidráulicos 7, 76–94 (2000)Google Scholar
  17. 17.
    Tuchkovenko, Y., Lonin, S., Calero, L.A.: Modelo de eutroficación de la bahía de Cartagena y su aplicación práctica. Boletín Científico CIOH 20, 28–44 (2002)CrossRefGoogle Scholar
  18. 18.
    Lonin, S.A., Tuchkovenko, Y.S.: Modelación matemática del régimen de oxígeno en la Bahía de Cartagena. Avances en Recursos Hidráulicos 5, 1–16 (1998)Google Scholar
  19. 19.
    Lonin, S., Parra, C., Andrade, C., Thomas, I.: Patrones de la pluma turbia del canal del Dique en la bahía Cartagena. Boletín Científico CIOH 22, 77–89 (2004)CrossRefGoogle Scholar
  20. 20.
    Molares, R.: Clasificación e identificación de las componentes de marea del Caribe colombiano. Boletín Científico CIOH 22, 105–114 (2004)CrossRefGoogle Scholar
  21. 21.
    APHA – American Public Health Association: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC (1985)Google Scholar
  22. 22.
    Lyard, F., Lefèvre, F., Letellier, T., Francis, O.: Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56(5), 394–415 (2006)CrossRefGoogle Scholar
  23. 23.
    Leitão, P.C., Mateus, M., Braunschweig, F., Fernandes, L., Neves, R.: Modelling coastal systems: the MOHID water numerical lab. In: Neves, R., Baretta, J., Mateus, M. (eds.) Perspectives on Integrated Coastal Zone Management in South America, pp. 77–88. IST Press, Lisbon (2008)Google Scholar
  24. 24.
    Mateus, M., Neves, R. (eds.): Ocean Modelling for Coastal Management: Case Studies with MOHID, 165 p. IST Press, Lisbon (2013)Google Scholar
  25. 25.
    Martins, F., Leitão, P.C., Silva, A., Neves, R.: 3D modelling in the Sado estuary using a new generic vertical discretization approach. Oceanol. Acta 24, 551–562 (2001)CrossRefGoogle Scholar
  26. 26.
    Burchard, H.: Applied Turbulence Modelling in Marine Waters, vol. 100. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Devlin, M.J., et al.: Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuar. Coast. Shelf Sci. 79(3), 429–439 (2008)CrossRefGoogle Scholar
  28. 28.
    Portela, L.I.: Mathematical modelling of hydrodynamic processes and water quality in Tagus estuary. Ph.D. thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisboa, Portugal (1996)Google Scholar
  29. 29.
    Parsons, T., Takahashi, M., Hargrave, G.: Biological Oceanographic Processes, 330 p. Pergamon Press, New York (1984)CrossRefGoogle Scholar
  30. 30.
    Franz, G.A.S., Leitão, P., Santos, A.D., Juliano, M., Neves, R.: From regional to local scale modelling on the south-eastern Brazilian shelf: case study of Paranaguá estuarine system. Braz. J. Oceanogr. 64(3), 277–294 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marko Tosic
    • 1
    Email author
  • Flávio Martins
    • 2
  • Serguei Lonin
    • 3
  • Alfredo Izquierdo
    • 4
  • Juan Darío Restrepo
    • 1
  1. 1.School of Sciences, Department of Earth SciencesUniversidad EAFITMedellínColombia
  2. 2.Instituto Superior de EngenhariaUniversidade do AlgarveFaroPortugal
  3. 3.Escuela Naval de Cadetes “Almirante Padilla”, Isla Naval ManzanilloCartagena de IndiasColombia
  4. 4.Faculty of Marine and Environmental Sciences, Applied Physics DepartmentUniversity of CádizCádizSpain

Personalised recommendations