Reconfiguration of the Multi-channel Communication System with Hierarchical Structure and Distributed Passive Switching

  • Piotr HajderEmail author
  • Łukasz Rauch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)


One of the key problems in parallel processing systems is the architecture of internodal connections, thus affecting the computational efficiency of the whole. In this work authors describe proposition of a new multi-channel hierarchical computational environment with distributed passive switching. According to authors, improvement of communication efficiency should be based on grouping of system components. In the first type of clustering processing nodes are combined into independent groups that communicate using a dedicated channel group. The second type of clustering splits channels available in the system. In particular, they are divided into smaller independent fragments that can be combined into clusters that support selected users. In this work, a model of computational environment and basic reconfiguration protocol were described. The necessary components and management of reconfiguration, passive switching and hierarchization were discussed, highlighting related problems to be solved. Main reconfiguration restrictions were specified, using and combining together two structural complexity measures: Complexity B Index and Efficiency Index.


Reconfiguration Distributed systems Multi-channel architecture 



The work was realized as a part of fundamental research financed by the Ministry of Science and Higher Education, grant no.


  1. 1.
    Rauch, L., Bachniak, D.: Dynamic load balancing for CAFE multiscale modelling methods for heterogeneous hardware infrastructure. Procedia Comput. Sci. 108C, 1813–1822 (2017)CrossRefGoogle Scholar
  2. 2.
    Rauch, L., Bzowski, K., Pietrzyk, M., Krol, D., Slota, R., Kitowski, J.: Application of HPC based VirtRoll system to design laminar cooling of strips according to material properties in the coil. In: Tenth ACC Cyfronet AGH HPC Users’ Conference, pp. 25–26 (2017)Google Scholar
  3. 3.
    Pajankar, A.: Raspberry Pi Supercomputing and Scientific Programming. Apress (2017)Google Scholar
  4. 4.
    Sterling, T., Anderson, M., Brodowicz, M.: High Performance Computing: Modern Systems and Practices. Morgan Kaufmann (2018)Google Scholar
  5. 5.
    InfiniBand Trade Association. Accessed 5 Jan 2019
  6. 6.
    Gritzalis, D., Theocharidou, M., Stergiopoulos, G.: Critical Infrastructure Security and Resilience. Springer, Cham (2019). Scholar
  7. 7.
    Trobec, R., Vasiljević, R., Tomasević, M., Milutinović, R., Valero, M.: Interconnection networks in petascale computing systems: a survey. ACM Comput. Surv. 49(3) (2016)Google Scholar
  8. 8.
    Radivojević, M., Matavulji, P.: The Emerging WDM EPON. Springer, Cham (2017). Scholar
  9. 9.
    Hwang, K., Ghosh, J.: Hypernet: a communication-efficient architecture for constructing massively parallel computers. IEEE Trans. Comput. C-36(12), 1450–1466 (1987)CrossRefGoogle Scholar
  10. 10.
    Chang, B.-J., Hwang, R.-H.: Performance analysis for hierarchical multirate loss networks. IEEE J. Mag., 187–199 (2004)CrossRefGoogle Scholar
  11. 11.
    Mesarovic, M.D.: Multilevel systems and concepts in process control. IEEE J. Mag. 58(1), 111–125 (1970)Google Scholar
  12. 12.
    Gubko, M.V.: Mathematical models of optimization of hierarchical structures. LENAND (2006)Google Scholar
  13. 13.
    Korte, B., Vygen, J.: Combinatorial Optimization. Theory and Algorithms, 3rd edn. Springer, Heidelberg (2006). Scholar
  14. 14.
    Hajder, M., Bolanowski, M.: Connectivity analysis in the computational systems with distributed communications in the multichanel environment. Pol. J. Environ. Stud. 17(2A), 14–18 (2008)Google Scholar
  15. 15.
    Rico-Gallego, J.A., Diaz-Martin, J.C., Manumachu, R.R., Lastovetsky, A.L.: A survey of communication performance models for high-performance computing. ACM Comput. Surv. 51(6) (2019)CrossRefGoogle Scholar
  16. 16.
    Yuan, L., Zhang, Y., Tang, Y., Rao, L., Sun, X.: LogGPH: a parallel computational model with hierarchical communication awareness. In: 13th IEEE International Conference on Computational Science and Engineering (2010)Google Scholar
  17. 17.
    Cappello, F., Fraigniaud, P., Mans, B., Rosenberg, A.L.: An algorithmic model for heterogeneous hyper-clusters: rationale and experience. Int. J. Found. Comput. Sci. 16(2), 195–215 (2005)CrossRefGoogle Scholar
  18. 18.
    Bautista-Gomez, L., Ropars, T., Maruyama, N., Cappello, F., Matsuoka, S.: Hierarchical clustering strategies for fault tolerance in large scale HPC systems. In: Proceedings of the 2012 IEEE International Conference on Cluster Computing (2012)Google Scholar
  19. 19.
    Bonomi, F., Milito, R., Zhu, J., Addepali, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, New York (2012)Google Scholar
  20. 20.
    Ferrer, A.J., Marques, J.M., Jorba, J.: Towards the decentralized cloud: survey on approaches and challenges for mobile, ad hoc, and edge computing. ACM Comput. Surv. 51(6) (2019)Google Scholar
  21. 21.
    Kafhali, S.E., Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. J. Supercomput. 73, 5261–5284 (2017)CrossRefGoogle Scholar
  22. 22.
    Li, X., Shao, Z., Zhu, M., Yang, J.: Fundamentals of Optical Computing Technology. Springer, Singapore (2018). Scholar
  23. 23.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRefGoogle Scholar
  24. 24.
    Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun. ACM 61(2), 72–81 (2018)CrossRefGoogle Scholar
  25. 25.
    Agrawal, G.P.: Optical communication: its history and recent progress. In: Al-Amri, M.D., El-Gomati, M.M., Zubairy, M.S. (eds.) Optics in Our Time, pp. 177–199. Springer, Cham (2016). Scholar
  26. 26.
    Kamisiński, A., Chołda, P., Jajszczyk, A.: Assessing the structural complexity of computer and communication networks. ACM Comput. Surv. 47(4) (2015)CrossRefGoogle Scholar
  27. 27.
    QuACN: Quantitative Analysis of Complex Networks. Accessed 1 April 2019
  28. 28.
    Mubarak, M., Carothers, C.D., Ross, R.B., Carns, P.: Enabling parallel simulation of large-scale HPC network system. IEEE Trans. Parallel Distrib. Syst. 28(1), 87–100 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations