Advertisement

Residual Minimization for Isogeometric Analysis in Reduced and Mixed Forms

  • Victor M. Calo
  • Quanling DengEmail author
  • Sergio Rojas
  • Albert Romkes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)

Abstract

Most variational forms of isogeometric analysis use highly-continuous basis functions for both trial and test spaces. Isogeometric analysis results in excellent discrete approximations for differential equations with regular solutions. However, we observe that high continuity for test spaces is not necessary. In this work, we present a framework which uses highly-continuous B-splines for the trial spaces and basis functions with minimal regularity and possibly lower order polynomials for the test spaces. To realize this goal, we adopt the residual minimization methodology. We pose the problem in a mixed formulation, which results in a system governing both the solution and a Riesz representation of the residual. We present various variational formulations which are variationally-stable and verify their equivalence numerically via numerical tests.

Keywords

Isogeometric analysis Finite elements Discontinuous Petrov-Galerkin Mixed formulation 

Notes

Acknowledgement

This publication was made possible in part by the CSIRO Professorial Chair in Computational Geoscience at Curtin University and the Deep Earth Imaging Enterprise Future Science Platforms of the Commonwealth Scientific Industrial Research Organisation, CSIRO, of Australia. The J. Tinsley Oden Faculty Fellowship Research Program at the Institute for Computational Engineering and Sciences (ICES) of the University of Texas at Austin has partially supported the visits of VMC to ICES. This work was partially supported by the European Union’s Horizon 2020 Research and Innovation Program of the Marie Skłodowska-Curie grant agreement No. 777778, the Mega-grant of the Russian Federation Government (N 14.Y26.31.0013), the Institute for Geoscience Research (TIGeR), and the Curtin Institute for Computation.

References

  1. 1.
    Auricchio, F., Da Veiga, L.B., Hughes, T., Reali, A., Sangalli, G.: Isogeometric collocation methods. Math. Models Methods Appl. Sci. 20, 2075–2107 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bazilevs, Y., Beirao da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buffa, A., De Falco, C., Sangalli, G.: Isogeometric analysis: new stable elements for the stokes equation. Int. J. Numer. Methods Fluids (2010)Google Scholar
  4. 4.
    Cai, Z., Lazarov, R., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal. 31, 1785–1799 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Calo, V.M., Collier, N.O., Niemi, A.H.: Analysis of the discontinuous petrov-galerkin method with optimal test functions for the reissner-mindlin plate bending model. Comput. Math. Appl. 66, 2570–2586 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Calo, V.M., Deng, Q., Puzyrev, V.: Dispersion optimized quadratures for isogeometric analysis, arXiv preprint arXiv:1702.04540 (2017)
  7. 7.
    Calo, V.M., Romkes, A., Valseth, E.: Automatic variationally stable analysis for FE computations: an introduction, arXiv preprint arXiv:1808.01888 (2018)
  8. 8.
    Cohen, A., Dahmen, W., Welper, G.: Adaptivity and variational stabilization for convection-diffusion equations. ESAIM Math. Model. Numer. Anal. 46, 1247–1273 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Collier, N., Dalcin, L., Calo, V.M.: On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers. Int. J. Numer. Methods Eng. 100, 620–632 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Collier, N., Dalcin, L., Pardo, D., Calo, V.M.: The cost of continuity: performance of iterative solvers on isogeometric finite elements. SIAM J. Sci. Comput. 35, A767–A784 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Collier, N., Pardo, D., Dalcin, L., Paszynski, M., Calo, V.M.: The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers. Comput. Methods Appl. Mech. Eng. 213, 353–361 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dahmen, W., Huang, C., Schwab, C., Welper, G.: Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50, 2420–2445 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    De Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978)CrossRefGoogle Scholar
  16. 16.
    Demkowicz, L.: Various variational formulations and closed range theorem. ICES Report 15 (2015)Google Scholar
  17. 17.
    Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. Part I: the transport equation. Comput. Methods Appl. Mech. Eng. 199, 1558–1572 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions. Numer. Methods Partial Differ. Eqn. 27, 70–105 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Demkowicz, L., Gopalakrishnan, J.: Discontinuous Petrov-Galerkin (DPG) method, Encyclopedia of Computational Mechanics Second Edition, pp. 1–15 (2017)Google Scholar
  20. 20.
    Demkowicz, L., Gopalakrishnan, J., Niemi, A.H.: A class of discontinuous Petrov-Galerkin methods. Part III: adaptivity. Appl. Numer. Math. 62, 396–427 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Deng, Q., Bartoň, M., Puzyrev, V., Calo, V.: Dispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis. Comput. Methods Appl. Mech. Eng. 328, 554–564 (2018)CrossRefGoogle Scholar
  22. 22.
    Deng, Q., Calo, V.: Dispersion-minimized mass for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 341, 71–92 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Evans, J.A., Hughes, T.J.: Isogeometric divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations. Mathe. Models Methods Appl. Sci. 23, 671–741 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Garcia, D., Pardo, D., Dalcin, L., Calo, V.M.: Refined isogeometric analysis for a preconditioned conjugate gradient solver. Comput. Methods Appl. Mech. Eng. 335, 490–509 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Garcia, D., Pardo, D., Dalcin, L., Paszyński, M., Collier, N., Calo, V.M.: The value of continuity: refined isogeometric analysis and fast direct solvers. Comput. Methods Appl. Mech. Eng. 316, 586–605 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Computational Mathematics, vol. 33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Łoś, M., Deng, Q., Muga, I., Calo, V., Paszyński, M.: Isogeometric residual minimization method (iGRM) with direction splitting for implicit problems (2018, in preparation)Google Scholar
  30. 30.
    Niemi, A., Collier, N., Calo, V.M.: Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems. Procedia Comput. Sci. (2011)Google Scholar
  31. 31.
    Niemi, A.H., Collier, N.O., Calo, V.M.: Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: quasi-optimal test space norm. Comput. Math. Appl. 66, 2096–2113 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Niemi, A.H., Collier, N.O., Calo, V.M.: Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension. J. Comput. Sci. 4, 157–163 (2013)CrossRefGoogle Scholar
  33. 33.
    Pardo, D., Paszynski, M., Collier, N., Alvarez, J., Dalcin, L., Calo, V.M.: A survey on direct solvers for Galerkin methods. SeMA J. 57, 107–134 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-97385-7CrossRefzbMATHGoogle Scholar
  35. 35.
    Puzyrev, V., Deng, Q., Calo, V.M.: Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes. Comput. Methods Appl. Mech. Eng. 320, 421–443 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. LNM, vol. 606, pp. 292–315. Springer, Heidelberg (1977).  https://doi.org/10.1007/BFb0064470CrossRefGoogle Scholar
  37. 37.
    Schillinger, D., Evans, J.A., Reali, A., Scott, M.A., Hughes, T.J.: Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Eng. 267, 170–232 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zitelli, J., Muga, I., Demkowicz, L., Gopalakrishnan, J., Pardo, D., Calo, V.M.: A class of discontinuous Petrov-Galerkin methods. Part IV: the optimal test norm and time-harmonic wave propagation in 1D. J. Comput. Phys. 230, 2406–2432 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Victor M. Calo
    • 1
    • 2
  • Quanling Deng
    • 1
    Email author
  • Sergio Rojas
    • 1
  • Albert Romkes
    • 3
  1. 1.Department of Applied GeologyCurtin UniversityBentley, PerthAustralia
  2. 2.Mineral ResourcesCommonwealth Scientific and Industrial Research Organisation (CSIRO)Kensington, PerthAustralia
  3. 3.Department of Mechanical EngineeringSouth Dakota Schoolol Mines and TechnologyRapid CityUSA

Personalised recommendations