Advertisement

Augmenting Multi-agent Negotiation in Interconnected Freight Transport Using Complex Networks Analysis

  • Alex BecheruEmail author
  • Costin Bădică
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)

Abstract

This paper proposes the use of computational methods of Complex Networks Analysis to augment the capabilities of broker agents involved in multi agent freight transport negotiation. We have developed an experimentation environment that enabled us to obtain compelling arguments suggesting that using our proposed approach, the broker is able to apply more effective negotiation strategies for gaining longer term benefits, than those offered by the standard Iterated Contract Net negotiation approach. The proposed negotiation strategies take effect on the entire population of biding agents and are driven by market inspired purposes like for example breaking monopolies and supporting agents with diverse transportation capabilities.

Keywords

Complex Networks Analysis Automated negotiation Multi Agent Systems Iterated Contract Net 

Notes

Acknowledgement

This work was supported by QFORIT programme, University of Craiova, 2017.

References

  1. 1.
    Adler, J.L., Blue, V.J.: A cooperative multi-agent transportation management and route guidance system. Transp. Res. Part C: Emerg. Technol. 10, 433–454 (2002)CrossRefGoogle Scholar
  2. 2.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: Icwsm, vol. 8, pp. 361–362 (2009)Google Scholar
  3. 3.
    Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade—a Java agent development framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming. MSASSO, vol. 15, pp. 125–147. Springer, Boston (2005).  https://doi.org/10.1007/0-387-26350-0_5CrossRefGoogle Scholar
  4. 4.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefGoogle Scholar
  5. 5.
    Cao, M., Luo, X., Luo, X.R., Dai, X.: Automated negotiation for e-commerce decision making: a goal deliberated agent architecture for multi-strategy selection. Decis. Support Syst. 73, 1–14 (2015)CrossRefGoogle Scholar
  6. 6.
    Cross, R., Borgatti, S.P., Parker, A.: Making invisible work visible: using social network analysis to support strategic collaboration. Calif. Manag. Rev. 44(2), 25–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Burckert, H.J., Fischer, K., Vierke, G.: Transportation scheduling with holonic MAS: the TeleTruck approach. In: proceedings of the 3rd International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, PAAM 1998, London, England (1998)Google Scholar
  8. 8.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Ferber, J., Weiss, G.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 1. Addison-Wesley, Reading (1999)Google Scholar
  10. 10.
    Freeman, L. C.: A set of measures of centrality based on betweenness. Sociometry, 35–41, 1977Google Scholar
  11. 11.
    Greve, A., Benassi, M., Sti, A.D.: Exploring the contributions of human and social capital to productivity. Int. Rev. Sociol. 20(1), 35–58 (2010)CrossRefGoogle Scholar
  12. 12.
    Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using NetworkX (No. LA-UR-08-05495; LA-UR-08-5495). Los Alamos National Lab. (LANL), Los Alamos, NM, USA (2008)Google Scholar
  13. 13.
    Foundation for Intelligent Physical Agents (FIPA) Iterated Contract Net protocol http://www.fipa.org/specs/fipa00030/SC00030H.pdf. Accessed 18 Jan 2019
  14. 14.
    Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Automated negotiation: prospects, methods and challenges. Group Decis. Negot. 10(2), 199–215 (2001)CrossRefGoogle Scholar
  15. 15.
    Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  16. 16.
    Luncean, L., Bădică, C., Bădică, A.: Agent-based system for brokering of logistics services – initial report. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8398, pp. 485–494. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05458-2_50CrossRefGoogle Scholar
  17. 17.
    Luncean, L., Bădică, C.: Semantic modeling of information for freight transportation broker. In: Proceedings: 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 527–534. IEEE (2014)Google Scholar
  18. 18.
    Luncean, L., Becheru, A., Bădică, C.: Initial evaluation of an ontology for transport brokering. In: Proceedings: 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 121–126. IEEE (2015)Google Scholar
  19. 19.
    Luncean, L., Becheru, A.: Communication and interaction in a multi-agent system devised for transport brokering. In: Proceedings: 7th Balkan Conference on Informatics: Advances in ICT, pp. 51–58 (2015)Google Scholar
  20. 20.
    Luncean, L., Mocanu, A., Becheru, A. P.: Automated negotiation framework for the transport logistics service. In: Proceedings: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 387–394. IEEE (2016)Google Scholar
  21. 21.
    McGee, J.S.: Predatory price cutting: the Standard Oil (NJ) case. J. Law Econ. 1, 137–169 (1958)CrossRefGoogle Scholar
  22. 22.
    Mes, M., van der Heijden, M., Schuur, P.: Interaction between intelligent agent strategies for real-time transportation planning. Central Eur. J. Oper. Res. 21(2), 337–358 (2013)CrossRefGoogle Scholar
  23. 23.
    Money, R.B.: International multilateral negotiations and social networks. J. Int. Bus. Stud. 29(4), 695–710 (1998)CrossRefGoogle Scholar
  24. 24.
    Nan, S.A.: Conflict resolution in a network society. Int. Negot. 13(1), 111–131 (2008)CrossRefGoogle Scholar
  25. 25.
    Neagu, N., Dorer, K., Greenwood, D., Calisti, M.: LS/ATN: reporting on a successful Agent-based solution for transport logistics optimization. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS 2006), pp. 213–218. IEEE, June 2006Google Scholar
  26. 26.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Stanford InfoLab (1999)Google Scholar
  27. 27.
    Picard, W.: NeSSy: enabling mass e-negotiations of complex contracts. In: Proceedings: 14th International Workshop on Database and Expert Systems Applications, pp. 829–833. IEEE (2003)Google Scholar
  28. 28.
    Posner, R.A.: Antitrust Law. University of Chicago press, Chicago (2009)Google Scholar
  29. 29.
    Sandstrom, G.M., Dunn, E.W.: Social interactions and well-being: the surprising power of weak ties. Pers. Soc. Psychol. Bull. 40(7), 910–922 (2014)CrossRefGoogle Scholar
  30. 30.
    Scafes, M., Badica, C.: Complex negotiations in multi-agent systems. Ann. Univ. Craiova Ser.: Autom. Comput. Electron. Mechatron. 7(34), 53–60 (2011)Google Scholar
  31. 31.
    Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2017)Google Scholar
  32. 32.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268 (2001)CrossRefGoogle Scholar
  33. 33.
    Van Doosselaere, Q.: Commercial Agreements and Social Dynamics in Medieval Genoa. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  34. 34.
    Wang, Y., Nascimento, J.M.D., Powell, W.: Dynamic bidding for advance commitments in truckload brokerage markets. arXiv preprint arXiv:1802.08976 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computers and Information TechnologyUniversity of CraiovaCraiovaRomania

Personalised recommendations