Advertisement

Heuristic Optimization with CPU-GPU Heterogeneous Wave Computing for Estimating Three-Dimensional Inner Structure

  • Takuma YamaguchiEmail author
  • Tsuyoshi Ichimura
  • Kohei Fujita
  • Muneo Hori
  • Lalith Wijerathne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)

Abstract

To increase the reliability of numerical simulations, it is important to use more reliable models. This study proposes a method to generate a finite element model that can reproduce observational data in a target domain. Our proposed method searches parameters to determine finite element models by combining simulated annealing and finite element wave propagation analyses. In the optimization, we utilize heterogeneous computer resources. The finite element solver, which is the computationally expensive portion, is computed rapidly using GPU computation. Simultaneously, we generate finite element models using CPU computation to overlap the computation time of model generation. We estimate the inner soil structure as an application example. The soil structure is reproduced from the observed time history of velocity on the ground surface using our developed optimizer.

Keywords

Heuristic optimization CPU-GPU collaborative computing CUDA Finite element analysis Conjugate gradient method 

References

  1. 1.
    Chronopoulos, A.T., Gear, C.W.: s-step iterative methods for symmetric linear systems. J. Comput. Appl. Math. 25(2), 153–168 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Clement, R., Schneider, J., Brambs, H.-J., Wunderlich, A., Geiger, M., Sander, F.G.: Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament. Comput. Methods Program. Biomed. 73(2), 135–144 (2004)CrossRefGoogle Scholar
  3. 3.
    Ichimura, T., et al.: An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model. Geophys. J. Int. 206(1), 114–129 (2016)CrossRefGoogle Scholar
  4. 4.
    Ichimura, T., Fujita, K., Hori, M., Sakanoue, T., Hamanaka, R.: Three-dimensional nonlinear seismic ground response analysis of local site effects for estimating seismic behavior of buried pipelines. J. Pressure Vessel Technol. 136(4), 041702 (2014)CrossRefGoogle Scholar
  5. 5.
    Ichimura, T., et al.: Implicit nonlinear wave simulation with 1.08 T DOF and 0.270 T unstructured finite elements to enhance comprehensive earthquake simulation. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, p. 4. ACM (2015)Google Scholar
  6. 6.
    Ichimura, T., Fujita, K., Yoshiyuki, A., Quinay, P.E., Hori, M., Sakanoue, T.: Performance enhancement of three-dimensional soil structure model via optimization for estimating seismic behavior of buried pipelines. J. Earthq. Tsunami 11(05), 1750019 (2017)CrossRefGoogle Scholar
  7. 7.
    Ingber, L.: Very fast simulated re-annealing. Math. Comput. Model. 12(8), 967–973 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kirk, D., et al.: NVIDIA CUDA software and GPU parallel computing architecture. In: ISMM, vol. 7, pp. 103–104 (2007)Google Scholar
  9. 9.
    Koch, R.M., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.: Simulating facial surgery using finite element models. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 421–428. ACM (1996)Google Scholar
  10. 10.
    Liang, J., Sun, S.: Site effects on seismic behavior of pipelines: a review. J. Pressure Vessel Technol. 122(4), 469–475 (2000)CrossRefGoogle Scholar
  11. 11.
    Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, pp. 79–84. ACM (2009)Google Scholar
  12. 12.
    Quinay, P.E.B., Ichimura, T., Hori, M.: Waveform inversion for modeling three-dimensional crust structure with topographic effects. Bull. Seismol. Soc. Am. 102(3), 1018–1029 (2012)CrossRefGoogle Scholar
  13. 13.
    Geospatial Information Authority of Japan Tokyo ward area. 5m mesh digital elevation map. http://www.gsi.go.jp/MAP/CD-ROM/dem5m/index.htm
  14. 14.
    Yamaguchi, T.: Viscoelastic crustal deformation computation method with reduced random memory accesses for GPU-based computers. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10861, pp. 31–43. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93701-4_3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Takuma Yamaguchi
    • 1
    Email author
  • Tsuyoshi Ichimura
    • 1
  • Kohei Fujita
    • 1
  • Muneo Hori
    • 2
  • Lalith Wijerathne
    • 1
  1. 1.Earthquake Research Institute and Department of Civil EngineeringThe University of TokyoBunkyoJapan
  2. 2.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations