Advertisement

Performance Evaluation of Tsunami Inundation Simulation on SX-Aurora TSUBASA

  • Akihiro MusaEmail author
  • Takashi Abe
  • Takumi Kishitani
  • Takuya Inoue
  • Masayuki Sato
  • Kazuhiko Komatsu
  • Yoichi Murashima
  • Shunichi Koshimura
  • Hiroaki Kobayashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)

Abstract

As tsunamis may cause damage in wide area, it is difficult to immediately understand the whole damage. To quickly estimate the damages of and respond to the disaster, we have developed a real-time tsunami inundation forecast system that utilizes the vector supercomputer SX-ACE for simulating tsunami inundation phenomena. The forecast system can complete a tsunami inundation and damage forecast for the southwestern part of the Pacific coast of Japan at the level of a 30-m grid size in less than 30 min. The forecast system requires higher-performance supercomputers to increase resolutions and expand forecast areas. In this paper, we compare the performance of the tsunami inundation simulation on SX-Aurora TSUBASA, which is a new vector supercomputer released in 2018, with those on Xeon Gold and SX-ACE. We clarify that SX-Aurora TSUBASA achieves the highest performance among the three systems and has a high potential for increasing resolutions as well as expanding forecast areas.

Keywords

System performance Supercomputer Tsunami simulation 

Notes

Acknowledgments

The authors would like to thank Mr. Takayuki Suzuki and Mr. Atsushi Tanobe of Kokusai Kogyo Co., LTD. for developing the tsunami model. This study was partially supported by JSPS KAKENHI Grant Numbers 16K12845, 17H06108, 18K11322, JST CREST Grant Number JP-MJCR1411, Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures in Japan (Project ID: jh180040-NAH), and Ministry of Education, Culture, Sports, Science and Technology of Japan (Next Generation High-Performance Computing Infrastructures and Applications R&D Program). In this work, we used SX-ACE of the Cyberscience Center at Tohoku University, and SX-ACE and Octopus of the Cybermedia Center at the Osaka University.

References

  1. 1.
    Arce Acuña, M., Aoki, T.: Tree-based mesh-refinement GPU-accelerated tsunami simulator for real-time operation. Nat. Hazards Earth Syst. Sci. 18(9), 2561–2602 (2018).  https://doi.org/10.5194/nhess-18-2561-2018. https://www.nat-hazards-earth-syst-sci.net/18/2561/2018/CrossRefGoogle Scholar
  2. 2.
    Cabinet Office: The investigative commmission on massive earthquake models in nankai trough (2012). http://www.bousai.go.jp/jishin/nankai/model/data_teikyou.html. (In Japanese)
  3. 3.
    Christgau, S., Spazier, J., Schnor, B.: A performance and scalability analysis of the tsunami simulation easywave for difference multi-core architectures and programming models. Technical report, Institute for Computer Science, University of Potsdam (2015). http://www.cs.uni-potsdam.de/bs/research/docs/techreports/2015/css15.pdf
  4. 4.
    Imamura, F., Anawat, S.: Damage due to the 2011 Tohoku earthquake tsunami and its lessons for future mitigation. In: Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, March 2012Google Scholar
  5. 5.
    Inoue, T., Abe, T., Koshimura, S., Musa, A., Murashima, Y., Kobayashi, H.: Development and validation of a tsunami numerical model with the polygonally nested grid system and its MPI-parallelization for real-time tsunami inundation forecast on a regional scale. J. Disaster Res. 14(3), 416–434 (2019).  https://doi.org/10.20965/jdr.2019.p0416CrossRefGoogle Scholar
  6. 6.
    IUGG/IOC Time Project: IUGG/IOC TIME PROJECT: Numerical method of Tsunami simulation with the leap-frog scheme. UNESCO (1997)Google Scholar
  7. 7.
    Kobayashi, H.: A case study of urgent computing on SX-ACE: design and development of a real-time tsunami inundation analysis system for disaster prevention and mitigation. In: Resch, M., et al. (eds.) Sustained Simulation Performance 2016, pp. 131–138. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46735-1_11CrossRefGoogle Scholar
  8. 8.
    Komatsu, K., et al.: Performance evaluation of a vector supercomputer SX-Aurora TSUBASA. In: The International Conference on High Performance Computing, Networking, Storage and Analysis (SC 2018), pp. 54:1–54:12. IEEE Press, Dallas, USA, November 2018. http://dl.acm.org/citation.cfm?id=3291656.3291728
  9. 9.
    Koshimura, S.: Establishing the advanced disaster reduction management system by fusion of real-time disaster simulation and big data assimilation. J. Disaster Res. 11(2), 164–174 (2016)CrossRefGoogle Scholar
  10. 10.
    Koshimura, S., Oie, T., Yanagisawa, H., Imamura, F.: Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast. Eng. J. JSCE 51(3), 243–273 (2009)CrossRefGoogle Scholar
  11. 11.
    Koshiyama, K.: Characteristics of emergency responcy at the great east Japan earthquake. In: 5th International Disaster and Risk Conference Davos 2014 [poster]. Davos, Switzland, August 2014. https://idrc.info/fileadmin/user_upload/idrc/documents/IDRC14_PosterCollection.pdf
  12. 12.
    Momose, S.: SX-ACE, brand-new vector supercomputer for higher sustained performance I. In: Resch, M., et al. (eds.) Sustained Simulation Performance 2014, pp. 57–67. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10626-7_5CrossRefGoogle Scholar
  13. 13.
    Mori, N., Takahashi, T., Yanagisawa, H.: Survey of 2011 Tohoku earthquake tsunami inundation. Geophys. Res. Lett. 38 L00G14 (2016).  https://doi.org/10.1029/2011GL049210CrossRefGoogle Scholar
  14. 14.
    Musa, A., et al.: A real-time tsunami inundation forecast system using vector supercomputer SX-ACE. J. Disaster Res. 13(2), 234–244 (2018).  https://doi.org/10.20965/jdr.2018.p0234CrossRefGoogle Scholar
  15. 15.
    Musa, A., et al.: Real-time tsunami inundation forecast system for tsunami disaster prevention and mitigation. J. Supercomput. 74(7), 3093–3113 (2018).  https://doi.org/10.1007/s11227-018-2363-0CrossRefGoogle Scholar
  16. 16.
    Nagasu, K., Sane, K., Kono, F., Nakasato, N.: FPGA-based tsunami simulation: performance comparison with GPUs, and roofline model for scalability analysis. J. Parallel Distrib. Comput. 106, 153–169 (2017).  https://doi.org/10.1016/j.jpdc.2016.12.015CrossRefGoogle Scholar
  17. 17.
    NEC Corporation: NEC Fortran 2003 Programmer’s Guide (2014)Google Scholar
  18. 18.
    Okada, N., Tao, Y., Yoshio, K., Peijun, S., Hirokazu, T.: The 2011 eastern Japan great earthquake disaster: Overview and comments. Int. J. Disaster Risk Sci. 2(1), 34–42 (2011).  https://doi.org/10.1007/s13753-011-0004-9CrossRefGoogle Scholar
  19. 19.
    Okada, Y.: Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 82(2), 1018–1040 (1992)Google Scholar
  20. 20.
    Yamada, Y., Momose, S.: Vector engine processor of NECfs brand-new supercomputer SX-Aurora TSUBASA. In: International symposium on High Performance Chips (Hot Chips), Cupertino, USA, August 2018Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Akihiro Musa
    • 1
    • 2
    Email author
  • Takashi Abe
    • 1
  • Takumi Kishitani
    • 1
  • Takuya Inoue
    • 1
    • 3
  • Masayuki Sato
    • 1
  • Kazuhiko Komatsu
    • 1
  • Yoichi Murashima
    • 1
    • 3
  • Shunichi Koshimura
    • 1
  • Hiroaki Kobayashi
    • 1
  1. 1.Tohoku UniversitySendaiJapan
  2. 2.NEC CorporationTokyoJapan
  3. 3.Kokusai Kogyo Co., LTD.Fuchu-shi, TokyoJapan

Personalised recommendations