Advertisement

Personalized Ranking in Dynamic Graphs Using Nonbacktracking Walks

  • Eisha NathanEmail author
  • Geoffrey Sanders
  • Van Emden Henson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)

Abstract

Centrality has long been studied as a method of identifying node importance in networks. In this paper we study a variant of several walk-based centrality metrics based on the notion of a nonbacktracking walk, where the pattern \(i\rightarrow j\rightarrow i\) is forbidden in the walk. Specifically, we focus our analysis on dynamic graphs, where the underlying data stream the network is drawn from is constantly changing. Efficient algorithms for calculating nonbactracking walk centrality scores in static and dynamic graphs are provided and experiments on graphs with several million vertices and edges are conducted. For the static algorithm, comparisons to a traditional linear algebraic method of calculating scores show that our algorithm produces scores of high accuracy within a theoretically guaranteed bound. Comparisons of our dynamic algorithm to the static show speedups of several orders of magnitude as well as a significant reduction in space required.

Keywords

Non-backtracking walks Dynamic graphs Centrality 

References

  1. 1.
    Grindrod, P., Higha, D.J., Noferini, V.: The deformed graph laplacian and its applications to network centrality analysis. SIAM J. Matrix Anal. Appl. 39(1), 310–341 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Martin, T., Zhang, X., Newman, M.E.J.: Localization and centrality in networks. Phys. Rev. E 90(5), 052808 (2014)CrossRefGoogle Scholar
  3. 3.
    Kawamoto, T.: Localized eigenvectors of the non-backtracking matrix. J. Stat. Mech.: Theory Exp. 2016(2), 023404 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cvetkovic, D., Cvetković, D.M., Rowlinson, P., Simic, S.: Eigenspaces of Graphs, vol. 66. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  5. 5.
    Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix functions. Linear Algebra Appl. 438(5), 2447–2474 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRefGoogle Scholar
  7. 7.
    Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007)CrossRefGoogle Scholar
  8. 8.
    Gleich, D.F.: Pagerank beyond the web. SIAM Rev. 57(3), 321–363 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aprahamian, M., Higham, D.J., Higham, N.J.: Matching exponential-based and resolvent-based centrality measures. J. Complex Netw. 4, 157–176 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex net. Phys. Rev. E 71(5), 056103 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Netw. 1(2), 124–149 (2013)CrossRefGoogle Scholar
  12. 12.
    Arrigo, F., Grindrod, P., Higham, D.J., Noferini, V.: Non-backtracking walk centrality for directed networks. J. Complex Netw. 6(1), 54–78 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brandes, U., Pich, C.: Centrality estimation in large networks. Int. J. Bifurcat. Chaos 17(07), 2303–2318 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Krzakala, F.: Spectral redemption in clustering sparse networks. Proc. Nat. Acad. Sci. 110(52), 20935–20940 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  17. 17.
    Kunegis, J.: Konect: the Koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350. ACM (2013)Google Scholar
  18. 18.
    Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eisha Nathan
    • 1
    Email author
  • Geoffrey Sanders
    • 1
  • Van Emden Henson
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations