Application of Continuous Time Quantum Walks to Image Segmentation

  • Michał Krok
  • Katarzyna RycerzEmail author
  • Marian Bubak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)


This paper provides the algorithm that applies concept of continuous time quantum walks to image segmentation problem. The work, inspired by results from its classical counterpart [9], presents and compares two versions of the solution regarding calculation of pixel-segment association: the version using limiting distribution of the walk and the version using last step distribution. The obtained results vary in terms of accuracy and possibilities to be ported to a real quantum device. The described results were obtained by simulation on classical computer, but the algorithms were designed in a way that will allow to use a real quantum computer, when ready.


Quantum walk Image segmentation Quantum algorithms 



This research was partly supported by the National Science Centre, Poland – project number 2014/15/B/ST6/05204.


  1. 1.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing - STOC 2001, pp. 50–59 (2000).
  2. 2.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster (2004).
  3. 3.
    Ashwin, N., Ashvin, V.: Quantum walk on the line. Technical report (2000)Google Scholar
  4. 4.
    Balu, R., Castillo, D., Siopsis, G.: Physical realization of topological quantum walks on IBM-Q and beyond (2017). Scholar
  5. 5.
    Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015). Scholar
  6. 6.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017). Scholar
  7. 7.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk, pp. 59–68 (2002).
  8. 8.
    Fasihi, M.S., Mikhael, W.B.: Overview of current biomedical image segmentation methods. In: Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence, CSCI 2016, pp. 803–808 (2017).
  9. 9.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006). Scholar
  10. 10.
    Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 469–475 (2006). Scholar
  11. 11.
    Hebenstreit, M., Alsina, D., Latorre, J.I., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95(5) (2017).
  12. 12.
    Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013). Scholar
  13. 13.
    Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015). Scholar
  14. 14.
    Ma, Z., Manuel, J., Tavares, R.S., Natal, R., Mascarenhas, T.: A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 13(2), 235–246 (2010). Scholar
  15. 15.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142 (2011). Scholar
  16. 16.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001).
  17. 17.
    Mat Isa, N., Salamah, S., Ngah, U.: Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Trans. Consum. Electron. 55(4), 2145–2153 (2009). Scholar
  18. 18.
    Mortensen, E.N., Barrett, W.A.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60(5), 349–384 (1998). Scholar
  19. 19.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. B Cybern. 9(1), 62–66 (1979). Scholar
  20. 20.
    Otterbach, J.S., Manenti, R., Alidoust, N., Bestwick, et al.: Unsupervised machine learning on a hybrid quantum computer (2017).
  21. 21.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993). Scholar
  22. 22.
    Sharma, S.: Vishwamittar: Brownian motion problem: Random walk and beyond. Resonance 10(8), 49–66 (2005). Scholar
  23. 23.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). Scholar
  24. 24.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010). Scholar
  25. 25.
    Weinberg, S.: Quantum mechanics without state vectors. Phys. Rev. A 90, 042102 (2014). Scholar
  26. 26.
    Yuheng, S., Hao, Y.: Image segmentation algorithms overview. CoRR abs/1707.0 (2017).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IBM Software LaboratoryKrakówPoland
  2. 2.Department of Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations