Advertisement

Application of Continuous Time Quantum Walks to Image Segmentation

  • Michał Krok
  • Katarzyna RycerzEmail author
  • Marian Bubak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11537)

Abstract

This paper provides the algorithm that applies concept of continuous time quantum walks to image segmentation problem. The work, inspired by results from its classical counterpart [9], presents and compares two versions of the solution regarding calculation of pixel-segment association: the version using limiting distribution of the walk and the version using last step distribution. The obtained results vary in terms of accuracy and possibilities to be ported to a real quantum device. The described results were obtained by simulation on classical computer, but the algorithms were designed in a way that will allow to use a real quantum computer, when ready.

Keywords

Quantum walk Image segmentation Quantum algorithms 

Notes

Acknowledgements

This research was partly supported by the National Science Centre, Poland – project number 2014/15/B/ST6/05204.

References

  1. 1.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing - STOC 2001, pp. 50–59 (2000).  https://doi.org/10.1145/380752.380758. http://arxiv.org/abs/quant-ph/0012090
  2. 2.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster (2004). http://arxiv.org/abs/quant-ph/0402107
  3. 3.
    Ashwin, N., Ashvin, V.: Quantum walk on the line. Technical report (2000)Google Scholar
  4. 4.
    Balu, R., Castillo, D., Siopsis, G.: Physical realization of topological quantum walks on IBM-Q and beyond (2017).  https://doi.org/10.1088/2058-9565/aab823. http://arxiv.org/abs/1710.03615CrossRefGoogle Scholar
  5. 5.
    Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015).  https://doi.org/10.1007/s11128-015-0932-1MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017).  https://doi.org/10.1109/TPAMI.2017.2699184CrossRefGoogle Scholar
  7. 7.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk, pp. 59–68 (2002).  https://doi.org/10.1145/780542.780552. http://arxiv.org/abs/quant-ph/0209131
  8. 8.
    Fasihi, M.S., Mikhael, W.B.: Overview of current biomedical image segmentation methods. In: Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence, CSCI 2016, pp. 803–808 (2017).  https://doi.org/10.1109/CSCI.2016.0156
  9. 9.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006).  https://doi.org/10.1109/TPAMI.2006.233CrossRefGoogle Scholar
  10. 10.
    Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 469–475 (2006).  https://doi.org/10.1109/TPAMI.2006.57CrossRefGoogle Scholar
  11. 11.
    Hebenstreit, M., Alsina, D., Latorre, J.I., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95(5) (2017).  https://doi.org/10.1103/PhysRevA.95.052339
  12. 12.
    Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013).  https://doi.org/10.1007/s11128-012-0521-5MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015).  https://doi.org/10.1109/TIFS.2014.2381872CrossRefGoogle Scholar
  14. 14.
    Ma, Z., Manuel, J., Tavares, R.S., Natal, R., Mascarenhas, T.: A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 13(2), 235–246 (2010).  https://doi.org/10.1080/10255840903131878CrossRefGoogle Scholar
  15. 15.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142 (2011).  https://doi.org/10.1137/090745854. http://arxiv.org/abs/quant-ph/0608026MathSciNetCrossRefGoogle Scholar
  16. 16.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001).  https://doi.org/10.1109/ICCV.2001.937655
  17. 17.
    Mat Isa, N., Salamah, S., Ngah, U.: Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Trans. Consum. Electron. 55(4), 2145–2153 (2009).  https://doi.org/10.1109/TCE.2009.5373781. http://ieeexplore.ieee.org/document/5373781/CrossRefGoogle Scholar
  18. 18.
    Mortensen, E.N., Barrett, W.A.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60(5), 349–384 (1998).  https://doi.org/10.1006/gmip.1998.0480. http://linkinghub.elsevier.com/retrieve/pii/S1077316998904804CrossRefzbMATHGoogle Scholar
  19. 19.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. B Cybern. 9(1), 62–66 (1979).  https://doi.org/10.1109/TSMC.1979.4310076. http://ieeexplore.ieee.org/document/4310076/CrossRefGoogle Scholar
  20. 20.
    Otterbach, J.S., Manenti, R., Alidoust, N., Bestwick, et al.: Unsupervised machine learning on a hybrid quantum computer (2017). http://arxiv.org/abs/1712.05771
  21. 21.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993).  https://doi.org/10.1016/0031-3203(93)90135-JCrossRefGoogle Scholar
  22. 22.
    Sharma, S.: Vishwamittar: Brownian motion problem: Random walk and beyond. Resonance 10(8), 49–66 (2005).  https://doi.org/10.1007/BF02866746CrossRefGoogle Scholar
  23. 23.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000).  https://doi.org/10.1109/34.868688CrossRefGoogle Scholar
  24. 24.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010).  https://doi.org/10.1007/s11128-009-0123-zMathSciNetCrossRefGoogle Scholar
  25. 25.
    Weinberg, S.: Quantum mechanics without state vectors. Phys. Rev. A 90, 042102 (2014).  https://doi.org/10.1103/PhysRevA.90.042102CrossRefGoogle Scholar
  26. 26.
    Yuheng, S., Hao, Y.: Image segmentation algorithms overview. CoRR abs/1707.0 (2017). http://arxiv.org/abs/1707.02051

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IBM Software LaboratoryKrakówPoland
  2. 2.Department of Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations