Skip to main content

Synchronization Under Control in Complex Networks for a Panic Model

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11537)

Abstract

After a sudden catastrophic event occurring in a population of individuals, panic can spread, persist and become more problematic than the catastrophe itself. In this paper, we explore through a computational approach the possibility to control the panic level in complex networks built with a recent behavioral model. After stating a rigorous theoretical framework, we propose a numerical investigation in order to establish the effect of the topology of the network on this control process, with randomly generated networks, and we compare the panic level for two distinct topology sets on a given network.

Keywords

  • Optimal control
  • Numerical computation
  • Dynamical system
  • Complex network
  • Synchronization
  • Panic

This work has been supported by the French government, through the National Research Agency (ANR) under the Societal Challenge 9 “Freedom and security of Europe, its citizens and resident” with the reference number ANR-17-CE39-0008, and the UCA-JEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22741-8_19
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-22741-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    MathSciNet  CrossRef  Google Scholar 

  2. Aric, A., Hagberg, D., Schult, A., Pieter, J.: Exploring network structure, dynamics, and function using networkX. In: Proceedings of the 7th Python in Science Conference (2008)

    Google Scholar 

  3. Bruzzone, A.: Perspectives of modeling & applied simulation: modeling, algorithms and simulations: advances and novel researches for problem-solving and decision-making in complex, multi-scale and multi-domain system. J. Comput. Sci. 10, 63–65 (2015)

    CrossRef  Google Scholar 

  4. Cantin, G.: Non identical coupled networks with a geographical model for human behaviors during catastrophic events. Int. J. Bifurcat. Chaos 27(14), 1750213 (2017)

    MathSciNet  CrossRef  Google Scholar 

  5. Cantin, G., et al.: Mathematical modeling of human behaviors during catastrophic events: stability and bifurcations. Int. J. Bifurcat. Chaos 26(10), 1630025 (2016)

    MathSciNet  CrossRef  Google Scholar 

  6. Cantin, G., et al.: Control of panic behavior in a non identical network coupled with a geographical model. In: PhysCon 2017, pp. 1–6. University, Firenze (2017)

    Google Scholar 

  7. Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

  8. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    CrossRef  Google Scholar 

  9. Provitolo, D., et al.: Les comportements humains en situation de catastrophe : de l’observation à la modélisation conceptuelle et mathématique. Cybergeo: Eur. J. Geogr. 735 (2015)

    Google Scholar 

  10. Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2(4), 609–646 (2003)

    MathSciNet  CrossRef  Google Scholar 

  11. Team Commands, Inria Saclay: Bocop: an open source toolbox for optimal control (2017). http://bocop.org

  12. Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04631-5

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Cantin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cantin, G., Verdière, N., Lanza, V. (2019). Synchronization Under Control in Complex Networks for a Panic Model. In: , et al. Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science(), vol 11537. Springer, Cham. https://doi.org/10.1007/978-3-030-22741-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22741-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22740-1

  • Online ISBN: 978-3-030-22741-8

  • eBook Packages: Computer ScienceComputer Science (R0)