Abualigah, L.: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering. Studies in Computational Intelligence. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10674-4
CrossRef
Google Scholar
Abualigah, L., Khader, A.T., Said Hanandeh, E.: A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng. Appl. Artif. Intell. 73, 111–125 (2018)
CrossRef
Google Scholar
Abualigah, L., Khader, A.T., Said Hanandeh, E.: Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 48(11), 4047–4071 (2018)
CrossRef
Google Scholar
Abualigah, L.M., Khader, A.T.: Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J. Supercomput. 73(11), 4773–4795 (2017)
CrossRef
Google Scholar
Blackman, S.: Multiple-Target Tracking with Radar Applications. Artech House, Dedham (1986)
Google Scholar
Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Dedham (1999)
MATH
Google Scholar
Boers, Y., Ehlers, F., Koch, W., Luginbuhl, T., Stone, L.D., Streit, R.L.: Track before detect algorithms. J. Adv. Signal Process. 2008, 2 (2008). https://doi.org/10.1155/2008/413932. Article ID 413932, Hindawi Publishing Corporation EURASIP
CrossRef
MATH
Google Scholar
Chapman, B., Jost, G., Pas, R.V.D.: Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation). The MIT Press, Cambridge (2007)
Google Scholar
Clerc, M.: From theory to practice in particle swarm optimization. In: Panigrahi, B.K., Shi, Y., Lim, H.M. (eds.) Handbook of Swarm Intelligence. Adaptation, Learning, and Optimization, pp. 3–36. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17390-5_1
CrossRef
MATH
Google Scholar
Dragovic, M.: Velocity Filtering for Target Detection and Track Initiation, vol. DSTO-TR-1406. Weapons Systems Division, Systems Sciences Laboratory (2003)
Google Scholar
Farber, R.: CUDA Application Design and Development. Morgan Kaufmann, San Francisco (2011)
Google Scholar
Karniadakis, G., Kirby, R.: Parallel Scientific Computing in C++ and MPI. Cambridge University Press, New York (2003)
CrossRef
Google Scholar
Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (1990)
CrossRef
Google Scholar
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995
Google Scholar
King, R.S.: Cluster Analysis and Data Mining: An Introduction. Mercury Learning & Information, Dulles (2014)
Google Scholar
Mazurek, P.: Comparison of different measurement spaces for spatio–temporal recurrent track–before–detect algorithm. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 3. AISC, vol. 102, pp. 157–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23154-4_18
CrossRef
Google Scholar
Mazurek, P.: Parallel distributed downsampled spatio-temporal track-before-detect algorithm. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 119–124, September 2014
Google Scholar
Mazurek, P.: Preprocessing using maximal autocovariance for spatio-temporal track-before-detect algorithm. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. AISC, vol. 233, pp. 45–54. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-01622-1_6
CrossRef
Google Scholar
Mazurek, P.: Noise objects tracking using multiple order statistics and spatio-temporal track-before-detect algorithm. In: Choraś, R. (ed.) IP&C 2016. AISC, vol. 525, pp. 112–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47274-4_13
CrossRef
Google Scholar
Metropolis, N.: The Beginning of the Monte Carlo Method. Los Alamos Science (1987). http://library.lanl.gov/la-pubs/00326866.pdf
Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley, Upper Saddle River (2010)
Google Scholar
Scott, T.A., Nilanjan, R.: Biomedical Image Analysis: Tracking. Morgan & Claypool, San Rafael (2005)
Google Scholar
Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Willey, Hoboken (2003)
CrossRef
Google Scholar
Stone, L., Barlow, C., Corwin, T.: Bayesian Multiple Target Tracking. Artech House, Norwood (1999)
MATH
Google Scholar
Torstensson, J., Trieb, M.: Particle Filtering for Track Before Detect Applications. Master’s thesis, Division of Automatic Control, Department of Electrical Engineering, Linköping University (2005)
Google Scholar
Zhang, T., Li, M., Zuo, Z., Yang, W., Sun, X.: Moving dim point target detection with three-dimensional wide-to-exact search directional filtering. Pattern Recogn. Lett. 28, 246–253 (2007)
CrossRef
Google Scholar