Skip to main content

Abstract

Over the past few years, biotin has become one of the most popular and widely used over the counter supplements, with claims of improving hair, skin, and nails. While the daily requirement for biotin is around 30–70 mcg, most supplements contain high doses of 5000–20,000 mcg (5–20 mg). These supplements result in blood levels of biotin that can interfere with common laboratory assays, specifically those using biotin–streptavidin chemistry. In the presence of high blood levels of biotin, the assay can lead to abnormally low (such as with TSH and PTH) or abnormally high (such as fT4, fT3, and cortisol) results. When coupled with patient symptoms or certain clinical situations, these abnormal laboratory results can lead to misdiagnosis of an endocrine disorder or can confound management of a true endocrine condition. Clinicians need to be aware of the effects of biotin on a wide variety of laboratory measurements and take precautions to avoid errors related to biotin interference. This can require an intentional approach, including close scrutiny of all supplements utilized by their patients as the biotin content may not be immediately obvious. Fortunately, withholding the biotin-containing supplements for an adequate time frame to permit a sufficient reduction in the biotin blood levels will allow accurate laboratory assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kummer S, Hermsen D, Distelmaier F. Biotin treatment mimicking Graves’ disease. N Engl J Med. 2016;375(7):704–6.

    Article  Google Scholar 

  2. Minkovsky A, Lee MN, Dowlatshahi M, Angell TE, Mahrokhian LS, Petrides AK, et al. High-dose biotin treatment for secondary progressive multiple sclerosis may interfere with thyroid assays. AACE Clin Case Rep. 2016;2(4):e370–e3.

    Article  Google Scholar 

  3. US FDA Administration Safety Communication. Biotin (Vitamin B7): may interfere with lab tests. 11/28/2017.

    Google Scholar 

  4. McMahon RJ. Biotin in metabolism and molecular biology. Annu Rev Nutr. 2002;22:221–39.

    Article  CAS  Google Scholar 

  5. Staggs CG, Sealey WM, McCabe BJ, Teague AM, Mock DM. Determination of the biotin content of select foods using accurate and sensitive HPLC/avidin binding. J Food Compos Anal. 2004;17(6):767–76.

    Article  CAS  Google Scholar 

  6. Zempleni J, Kuroishi T. Biotin. Adv Nutr. 2012;3(2):213–4.

    Article  Google Scholar 

  7. Zempleni J, Wijeratne SS, Kuroishi T. Biotin. In: Erdman Jr JW, Macdonald I, Zeisel SH, editors. Present knowledge in nutrition. Washington, DC: International Life Sciences Institute; 2012. p. 587–609.

    Google Scholar 

  8. Wijeratne NG, Doery JC, Lu ZX. Positive and negative interference in immunoassays following biotin ingestion: a pharmacokinetic study. Pathology. 2012;44(7):674–5.

    Article  Google Scholar 

  9. Peyro Saint Paul L, Debruyne D, Bernard D, Mock DM, Defer GL. Pharmacokinetics and pharmacodynamics of MD1003 (high-dose biotin) in the treatment of progressive multiple sclerosis. Expert Opin Drug Metab Toxicol. 2016;12(3):327–44.

    Article  CAS  Google Scholar 

  10. Meany DL, Jan de Beur SM, Bill MJ, Sokoll LJ. A case of renal osteodystrophy with unexpected serum intact parathyroid hormone concentrations. Clin Chem. 2009;55(9):1737–9.

    Article  CAS  Google Scholar 

  11. Suormala T, Fowler B, Duran M, Burtscher A, Fuchshuber A, Tratzmuller R, et al. Five patients with a biotin-responsive defect in holocarboxylase formation: evaluation of responsiveness to biotin therapy in vivo and comparative biochemical studies in vitro. Pediatr Res. 1997;41(5):666–73.

    Article  CAS  Google Scholar 

  12. Wolf B. Biotinidase deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews. Seattle: University of Washington; 1993–2018.

    Google Scholar 

  13. Tabarki B, Al-Hashem A, Alfadhel M. Biotin-thiamine-responsive basal ganglia disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews. Seattle: University of Washington; 1993–2018.

    Google Scholar 

  14. Sedel F, Papeix C, Bellanger A, Touitou V, Lebrun-Frenay C, Galanaud D, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2015;4(2):159–69.

    Article  Google Scholar 

  15. Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S, et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomized, double-blind, placebo-controlled study. Mult Scler. 2016;22(13):1719–31.

    Article  CAS  Google Scholar 

  16. Evans E, Piccio L, Cross AH. Use of vitamins and dietary supplements by patients with multiple sclerosis: a review. JAMA Neurol. 2018;75(8):1013–21. https://doi.org/10.1001/jamaneurol.2018.0611.

    Article  Google Scholar 

  17. Soleymani T, Lo Sicco K, Shapiro J. The infatuation with biotin supplementation: is there truth behind its rising popularity? A comparative analysis of clinical efficacy versus social popularity. J Drugs Dermatol. 2017;16(5):496–500.

    CAS  PubMed  Google Scholar 

  18. Clevidence BA, Marshall MW, Canary JJ. Biotin levels in plasma and urine of healthy adults consuming physiological doses of biotin. Nutr Res. 1988;8(10):1109–18.

    Article  CAS  Google Scholar 

  19. Grimsey P, Frey N, Bendig G, Zitzler J, Lorenz O, Kasapic D, et al. Population pharmacokinetics of exogenous biotin and the relationship between biotin serum levels and in vitro immunoassay interference. Int J Pharm. 2017;2(4):247–56.

    CAS  Google Scholar 

  20. Wilchek M, Bayer EA. Avidin-biotin mediated immunoassays: an overview. Methods Enzymol. 1990;184:467–9.

    Article  CAS  Google Scholar 

  21. Diamandis EP, Christopoulos TK. The biotin-(strept) avidin system: principles and applications in biotechnology. Clin Chem. 1991;37(5):625–36.

    CAS  PubMed  Google Scholar 

  22. Piketty ML, Polak M, Flechtner I, Gonzales-Briceno L, Souberbielle JC. False biochemical diagnosis of hyperthyroidism in streptavidin-biotin-based immunoassays: the problem of biotin intake and related interferences. Clin Chem Lab Med. 2017;55(6):780–8.

    Article  CAS  Google Scholar 

  23. Li D, Radulescu A, Shrestha RT, Root M, Karger AB, Killeen AA, et al. Association of biotin ingestion with performance of hormone and nonhormone assays in healthy adults. JAMA. 2017;318(12):1150–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Greenlee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Algeciras-Schimnich, A., Greenlee, C. (2019). Bewildered by Biotin. In: McDermott, M. (eds) Management of Patients with Pseudo-Endocrine Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-22720-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22720-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22719-7

  • Online ISBN: 978-3-030-22720-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics