Skip to main content

Nanowaveguides. Bloch Waves

  • Chapter
  • First Online:
Waveguide Propagation of Nonlinear Waves

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 109))

  • 598 Accesses

Abstract

The quantum description of transport properties in nanostructures are directly connected with the geometry of the object and the corresponding electron states in a field of atomic systems [1, 2]. Waveguide properties in optics and microwaves demonstrate the very rich set of possibilities for solitonic behavior [3], and also constructive possibilities [4]. The conventional quantum mechanics of pure electron states originated from the mathematical results of Floquet [5], which lead to the fundamental notion of the Bloch  function. The quantum state is here defined as the common eigenfunction of commuting translational symmetric Hamiltonian and shift operators [6]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003)

    Article  ADS  Google Scholar 

  2. A. Blanco-Redondo, I. Andonegui, M.J. Collins, G. Harari, Y. Lumer, M.C. Rechtsman, B.J. Eggleton, M. Segev, Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States. Phys. Rev. Lett. 116, 163901 (2016)

    Article  ADS  Google Scholar 

  3. A.A. Sukhorukov, Y.S. Kivshar, H.S. Eisenberg, Y. Silberberg, Spatial optical solitons in waveguide arrays. IEEE J. Quantum Electron. 39, 31–50 (2003)

    Article  ADS  Google Scholar 

  4. R.S. Savelev, A.P. Slobozhanyuk, A.E. Miroshnichenko, Y.S. Kivshar, P.A. Belov, Subwavelength waveguides composed of dielectric nanoparticles. Phys. Rev. B 89, 035435 (2014)

    Article  ADS  Google Scholar 

  5. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. de l’Ecole Norm. Supérieure 12, 47–88 (1883)

    Article  MathSciNet  Google Scholar 

  6. V.A. Geyler, IYu. Popov, Group-theoretical analysis of lattice Hamiltonians with a magnetic field. Phys. Lett. A 201, 359–364 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  7. S.B. Leble, Kolmogorov equation for Bloch electrons and electrical resistivity models for nanowires. Nanosyst. Phys. Chem. Math. 8(2), 247–259 (2017)

    Google Scholar 

  8. E. Fermi, Sopra lo spostamento per pressione delle righe elevate delle serie spettrali. Il Nuovo Cim. 11, 157–166 (1934)

    Article  ADS  Google Scholar 

  9. G. Breit, The scattering of slow neutrons by bound protons: methods of calculation. Phys. Rev. 71, 215 (1947)

    Article  ADS  Google Scholar 

  10. YuN Demkov, V.N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics (Plenum, New York, 1988)

    Book  Google Scholar 

  11. B.S. Pavlov, The theory of extensions and explicitly-solvable models. Uspekhi Mat. Nauk. 258, 99–131 (1987); Russ. Math. Surv. 42 (6), 127–168 (1987)

    Article  ADS  Google Scholar 

  12. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics (Springer, New York, 1988)

    Book  Google Scholar 

  13. S.B. Leble, S. Yalunin, Multiple scattering and electron-uracil collisions at low energies. EPJ 144, 115–122 (2007)

    ADS  Google Scholar 

  14. K. Huang, C.N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767–775 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Derevianko, Revised Huang-Yang multipolar pseudopotential. Phys. Rev. A 72, 044701 (2005)

    Article  ADS  Google Scholar 

  16. S.B. Leble, S. Yalunin, A dressing of zero-range potentials and electron-molecule scattering problem at low energies. Phys. Lett. A 339, 83–88 (2005)

    Article  ADS  Google Scholar 

  17. S.B. Leble, S. Yalunin, Generalized zero range potentials and multi-channel electron-molecule scattering. Rad. Phys. Chem. 68, 181–186 (2003)

    Article  ADS  Google Scholar 

  18. S. Leble, D.V. Ponomarev, Dressing of zero-range potentials into realistic molecular potentials of finite range. Task Q. 14(1–2), 29–34 (2010)

    Google Scholar 

  19. V.M. Adamyan, I.V. Blinova, A.I. Popov, I.Yu. Popov: Waveguide bands for a system of macromolecules. Nanosyst. Phys. Chem. Math. 6(5), 611–617 (2015)

    Google Scholar 

  20. E.N. Grishanov, I.Y. Popov, Electron spectrum for aligned SWNT array in a magnetic field. Superlattices Microstruct. 100, 1276–1282 (2016)

    Article  ADS  Google Scholar 

  21. E.N. Grishanov, I.Y. Popov, Computer simulation of periodic nanostructures. Nanosyst. Phys. Chem. Math. 7(5), 865–868 (2016)

    Google Scholar 

  22. S. Leble, Cyclic periodic ZRP structures. Scattering problem for generalized Bloch functions and conductivity. Nanosyst. Phys. Chem. Math. 9 (2), 225–243 (2018)

    MathSciNet  Google Scholar 

  23. D.V. Ponomarev, Electronic states in zero-range potential models of nanostructures with a cyclic symmetry. M.Sc. Thesis. Supervisor: S. Leble, Gdansk University of Technology (2010)

    Google Scholar 

  24. E.V. Doktorov, S.B. Leble, Dressing Method in Mathematical Physics (Springer, Dordrecht, 2007)

    Book  Google Scholar 

  25. IYu. Popov, S.L. Popova, Eigenvalues and bands imbedded in the continuous spectrum for a system of resonators and a waveguide: solvable model. Phys. Lett. A 222, 286–290 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. V. Fock, Fundamentals of Quantum Mechanics. (Mir publishers, Moscow, 1978, 1982)

    Google Scholar 

  27. R. Szmytkowski, Zero-range potentials for Dirac particles: scattering and related continuum problems. Phys. Rev. A 71(052708), 1–19 (2005)

    Google Scholar 

  28. S. Botman, S. Leble, Bloch wave scattering on pseudopotential impurity in 1D Dirac comb model. arXiv:1511.04758v1 [cond-mat.mes-hall]

  29. M. Le Bellac, Quantum Physics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  30. C.A. Coulson, B. O’Leary, R.B. Mallion, Hückel Theory for Organic Chemists (Academic Press, London, 1978)

    Google Scholar 

  31. M. Nakahara, C. Wakai, N. Matubayasi, Jump in the rotational mobility of Benzene induced by the Clathrate Hydrate formation. J. Phys. Chem. 99(5), 1377–1379 (1995)

    Article  Google Scholar 

  32. B.S. Pavlov, A.V. Strepetov, Exactly solvable model of electron scattering by an inhomogeneity in a thin conductor. TMF 90(2), 226–232 (1992); Theoret. Math. Phys. 90 (2), 152–156 (1992)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Leble .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leble, S. (2019). Nanowaveguides. Bloch Waves. In: Waveguide Propagation of Nonlinear Waves. Springer Series on Atomic, Optical, and Plasma Physics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-22652-7_8

Download citation

Publish with us

Policies and ethics