Pareto-Based Hybrid Algorithms for the Bicriteria Asymmetric Travelling Salesman Problem

  • Yulia V. KovalenkoEmail author
  • Aleksey O. Zakharov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)


We consider the bicriteria asymmetric travelling salesman problem (bi-ATSP): Given a complete directed graph where each arc is associated to a couple of positive weights, the aim is to find the Pareto set, consisting of all non-dominated Hamiltonian circuits. We propose new hybrid algorithms for the bi-ATSP using the adjacency-based representation of solutions and the operators that use the Pareto relation. Our algorithms are based on local search and evolutionary methods. The local search combines principles of the well-known Pareto Local Search procedures and Variable Neighborhood Search approach, realizing the search in width and depth. A genetic algorithm with NSGA-II scheme is applied to improve and extend a set of Pareto local optima by means of evolutionary processes. The experimental evaluation shows applicability of the algorithms to various structures of the bi-ATSP instances generated randomly and constructed from benchmark asymmetric instances with single objective.


The Pareto set Genetic algorithm Local search Computational experiment 



The research reported in Sects. 2 and 3 is supported by RFBR grant 19-47-540005, and the research reported in Sect. 4 is supported by the Ministry of Science and Higher Education of the Russian Federation, government program of Sobolev Institute of Mathematics SB RAS, project N 0250-2019-0001 (Yu. Kovalenko). The research reported in Sect. 5 is supported by RFBR grant 17-07-00371 (A. Zakharov).


  1. 1.
    Angel, E., Bampis, E., Gourves, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Gandibleux, X., Sevaux, M., Sorensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNCS, vol. 535, pp. 153–176. Springer, Heidelberg (2004). Scholar
  2. 2.
    Angel, E., Bampis, E., Gourvès, L., Monnot, J.: (Non)-approximability for the multi-criteria TSP(1,2). In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 329–340. Springer, Heidelberg (2005). Scholar
  3. 3.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999). Scholar
  4. 4.
    Bökler, F.: The multiobjective shortest path problem is NP-Hard, or is it? In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 77–87. Springer, Cham (2017). Scholar
  5. 5.
    Burke, E.K., Cowling, P.I., Keuthen, R.: Effective local and guided variable neighbourhood search methods for the asymmetric travelling salesman problem. In: Boers, E.J.W. (ed.) EvoWorkshops 2001. LNCS, vol. 2037, pp. 203–212. Springer, Heidelberg (2001). Scholar
  6. 6.
    Buzdalov, M., Yakupov, I., Stankevich, A.: Fast implementation of the steady-state NSGA-II algorithm for two dimensions based on incremental non-dominated sorting. In: GECCO-15, pp. 647–654 (2015).
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). Scholar
  8. 8.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). Scholar
  9. 9.
    Eremeev, A.V., Kovalenko, Y.V.: Genetic algorithm with optimal recombination for the asymmetric travelling salesman problem. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp. 341–349. Springer, Cham (2018). Scholar
  10. 10.
    Garcia-Martinez, C., Cordon, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. Oper. Res. 180, 116–148 (2007). Scholar
  11. 11.
    Hansen, P., Mladenović, N., Todosijevic, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017). Scholar
  12. 12.
    Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002). Scholar
  13. 13.
    Jaszkiewicz, A., Zielniewicz, P.: Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem. Eur. J. Oper. Res. 193, 885–890 (2009). Scholar
  14. 14.
    Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003). Scholar
  15. 15.
    Kumar, R., Singh, P.K.: Pareto evolutionary algorithm hybridized with local search for biobjective TSP. In: Abraham, A., Grosan, C., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms. SCI, vol. 14, pp. 361–398. Springer, Heidelberg (2007). Scholar
  16. 16.
    Lust, T., Teghem, J.: The multiobjective traveling salesman problem: a survey and a new approach. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272, pp. 119–141. Springer, Berlin (2010). Scholar
  17. 17.
    Moraes, D., Sanches, D., Rocha, J., Garbelini, J., Castoldi, M.: A novel multi-objective evolutionary algorithm based on subpopulations for the bi-objective traveling salesman problem. Soft Comput. 1–12 (2018).
  18. 18.
    Multiobjective optimization library. Accessed 09 Feb 2019
  19. 19.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp. 177–199. Springer, Heidelberg (2004). Scholar
  20. 20.
    Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003). Scholar
  21. 21.
    Piriyaniti, I., Pongchairerks, P.: Variable neighbourhood search algorithms for asymmetric travelling salesman problems. Int. J. Oper. Res. 18(2), 157–170 (2013). Scholar
  22. 22.
    Podinovskiy, V.V., Noghin, V.D.: Pareto-optimal’nye resheniya mnogokriterial’nyh zadach (Pareto-optimal solutions of multicriteria problems). Fizmatlit, Moscow (2007, in Russian)Google Scholar
  23. 23.
    Psychas, I.D., Delimpasi, E., Marinakis, Y.: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem. Expert. Syst. Appl. 42(22), 8956–8970 (2015). Scholar
  24. 24.
    Reeves, C.R.: Genetic algorithms for the operations researcher. INFORMS J. Comput. 9(3), 231–250 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991). Scholar
  26. 26.
    Riquelme, N., Von Lucken, C., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11. IEEE (2015).
  27. 27.
    Soler, D.N., Martinez, E., Mico, J.: A transformation for the mixed general routing problem with turn penalties. J. Oper. Res. Soc. 59(4), 540–547 (2008). Scholar
  28. 28.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994). Scholar
  29. 29.
    Whitley, D., Starkweather, T., McDaniel, S., Mathias, K.: A comparison of genetic sequencing operators. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 69–76. Morgan Kaufmann, New York (1991)Google Scholar
  30. 30.
    Zakharov, A., Kovalenko, Y.: Construction and reduction of the pareto set in asymmetric travelling salesman problem with two criteria. Vestnik of Saint Petersburg University. Appl. Math. Comput. Sci. Control. Process. 14(4), 378–392 (2018).
  31. 31.
    Zakharov, A.O., Kovalenko, Y.V.: Reduction of the pareto set in bicriteria asymmetric traveling salesman problem. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 93–105. Springer, Cham (2018). Scholar
  32. 32.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations