The Local and Global Searches in Bilevel Problems with a Matrix Game at the Lower Level

  • Andrei V. OrlovEmail author
  • Tatiana V. Gruzdeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)


This work addresses the simplest class of the bilevel optimization problems (BOPs) with equilibrium at the lower level. We study linear BOPs with a matrix game at the lower level in their optimistic statement. First, we transform this problem to a single-level nonconvex optimization problem with the help of the optimality conditions for the lower level problem. Then we apply the special Global Search Theory (GST) for general d.c. optimization problems to the reduced problem. Following this theory, the methods of local and global searches in this problem are constructed. These methods take into account the structure of the problem in question.


Bilevel optimization Bilevel problems with equilibrium at the lower level Matrix game Optimistic solution Reduction theorem D.C. constraint problem Global Search Theory Local search Global search 


  1. 1.
    Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  2. 2.
    Pang, J.-S.: Three modeling paradigms in mathematical programming. Math. Program. Ser. B 125, 297–323 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153, 235–256 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dempe, S.: Bilevel programming. In: Audet, C., Hansen, P., Savard, G. (eds.) Essays and Surveys in Global Optimization, pp. 165–193. Springer, Boston (2005). Scholar
  5. 5.
    Dempe, S., Kalashnikov, V.V., Perez-Valdes, G.A., Kalashnykova, N.: Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks. Springer, Heidelberg (2015). Scholar
  6. 6.
    Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. Ser. A 131, 37–48 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  8. 8.
    Hu, M., Fukushima, M.: Existence, uniqueness, and computation of robust Nash equilibria in a class of multi-leader-follower games. SIAM J. Optim. 23(2), 894–916 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ang, J., Fukushima, M., Meng, F., Noda, T., Sun, J.: Establishing Nash equilibrium of the manufacturer-supplier game in supply chain management. J. Glob. Optim. 56, 1297–1312 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, H., Bennis, M., Da Silva, L.A., Han, Z.: Multi-leader multi-follower Stackelberg game among Wi-Fi, small cell and macrocell networks. In: 2014 IEEE Global Communications Conference, pp. 4520–4524 (2014)Google Scholar
  11. 11.
    Ramos, M., Boix, M., Aussel, D., Montastruc, L., Domenech, S.: Water integration in eco-industrial parks using a multi-leader-follower approach. Comput. Chem. Eng. 87, 190–207 (2016)CrossRefGoogle Scholar
  12. 12.
    Yang, Zh, Ju, Y.: Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games. J. Glob. Optim. 65, 563–573 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Owen, G.: Game Theory. Academic Press, New York (1995)zbMATHGoogle Scholar
  14. 14.
    Strekalovsky, A.S., Orlov, A.V.: Bimatrix Games and Bilinear Programming. FizMatLit, Moscow (2007). (in Russian)Google Scholar
  15. 15.
    Mazalov, V.: Mathematical Game Theory and Applications. Wiley, New York (2014)zbMATHGoogle Scholar
  16. 16.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1993). Scholar
  17. 17.
    Strongin, R.G., Sergeyev, Ya.D: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Springer, New York (2000). Scholar
  18. 18.
    Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk (2003). (in Russian)Google Scholar
  19. 19.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, Berlin, Heidelberg (2000). Scholar
  20. 20.
    Bonnans, J.-F., Gilbert, J.C., Lemarechal, C., Sagastizabal, C.A.: Numerical Optimization: Theoretical and Practical Aspects. Springer, Heidelberg (2006). Scholar
  21. 21.
    Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 465–502. Springer, New York (2014). Scholar
  22. 22.
    Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Strekalovsky, A.S.: Global optimality conditions in nonconvex optimization. J. Optim. Theory Appl. 173(3), 770–792 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Strekalovsky, A.S.: Global optimality conditions and exact penalization. Optim. Lett. (published online)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Orlov, A.V., Strekalovsky, A.S.: Numerical search for equilibria in bimatrix games. Comput. Math. Math. Phys. 45, 947–960 (2005)MathSciNetGoogle Scholar
  26. 26.
    Orlov, A.V.: Numerical solution of bilinear programming problems. Comput. Math. Math. Phys. 48, 225–241 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Gruzdeva, T.V., Petrova, E.G.: Numerical solution of a linear bilevel problem. Comput. Math. Math. Phys. 50, 1631–1641 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: On computational search for optimistic solutions in bilevel problems. J. Glob. Optim. 48(1), 159–172 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Orlov, A.V., Strekalovsky, A.S., Batbileg, S.: On computational search for Nash equilibrium in hexamatrix games. Optim. Lett. 10(2), 369–381 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gruzdeva, T., Strekalovsky, A.: An approach to fractional programming via D.C. constraints problem: local search. In: Kochetov, Yu., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 404–417. Springer, Cham (2016). Scholar
  31. 31.
    Gruzdeva, T.V.: On a continuous approach for the maximum weighted clique problem. J. Glob. Optim. 56, 971–981 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gaudioso, M., Gruzdeva, T.V., Strekalovsky, A.S.: On numerical solving the spherical separability problem. J. Glob. Optim. 66(1), 21–34 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Enkhbat, R., Gruzdeva, T.V., Barkova, M.V.: DC programming approach for solving an applied ore-processing problem. J. Ind. Manag. Optim. 14(2), 613–623 (2018)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gruzdeva, T.V., Strekalovskiy, A.S.: On solving the sum-of-ratios problem. Appl. Math. Comput. 318, 260–269 (2018)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control Theory of SB of RASIrkutskRussia

Personalised recommendations