Image-Based Target Detection and Tracking Using Image-Assisted Robotic Total Stations



Robotic total stations are modern geodetic multi-sensor systems measuring horizontal and vertical angles as well as distances using time-of-flight methods, thus delivering 3D coordinates for static as well as moving objects. Automatic target detection (by rough and fine pointing techniques) and tracking are standard techniques if the objects are signalized with reflectors, and the total station is motorized. Nowadays, these instruments are additionally equipped with one or two cameras to generate images mainly for documentation purposes. This paves the way to detect and track objects that are not signalized by reflectors. Photogrammetric techniques such as SURF (speeded-up robust feature) or SIFT (scale-invariant feature transform) are applied for the detection of special, recognizable object features in the images. The pixel coordinates of these features result in vertical and horizontal angles if the parallaxes between the camera optical center and the total station origin are known or calibrated. If the features are extracted in a sequence of images, the movement of any object can be tracked automatically. For the position determination, reflector-less distance measurement from the total station to the object is additionally required. Until now, this was realized only for static objects. In this contribution, an example of a kinematic application is also shown. The quality of these tracking procedures may be verified by an instrument of higher accuracy. At the end of this contribution, a procedure using laser tracker is presented.


Robotic total stations Image processing Time-of-flight Speeded-up robust feature Scale-invariant feature transform Object detection Object tracking 



Three dimensional

Spatial extent, concerning the three dimensions/axis: x, y, z


American Standard Code for Information Interchange


Charge-coupled device

Light-sensitive chip


Complementary metal-oxide-semiconductor

Light-sensitive chip


Electronic distance measurement

Distance measurements based on a modulated infrared light beam


Field of vision

Visible part by the use of a telescope



Concerns the spatial orientation and extension


Image-assisted total station

Geodetic measurement device, extended by camera and laser scanner



Unique tag feature


Light-emitting diode


M-estimator sample consensus

Filtering algorithm to avoid gross errors and increase the robustness


Mega pixel

1 × 106 pixel


Personal computer


Root mean square


Robotic total station

Geodetic measurement device


Scale-invariant feature transform

Image processing algorithm


Speeded-up robust feature

Image processing algorithm


Unmanned air vehicle


Unmanned ground vehicle



Concerns the spatial orientation and extension


  1. 1.
    Rogers, L. (2004). Leonard and Thomas Digges: 16th century mathematical practitioners, script to oral presentation. Retrieved from November 11, 2018, from
  2. 2.
    McConnell, A. (2013). Jesse Ramsden: The craftsman who believed that big was beautiful. The Antiquarian Astronmer, (7), 41–53.Google Scholar
  3. 3.
    Mark, R.-P. (2009). Von Zeiss zu Trimble – 100 Jahre Entwicklung und Bau geodätischer Instrumente in Jena. Allgemeine Vermessungsnachrichten, 3, 83–88. Berlin.Google Scholar
  4. 4.
    Leitz, H. (1969). Zwei elektronische Tachymeter von Zeiss. Allgemeine Vermessungsnachrichten, 1/69, 73–79. Karlsruhe.Google Scholar
  5. 5.
    Matthias, H. (1982). Der Topomat, Vermessung, Photogrammetrie. Kulturtechnik, 80(4), 123–128.Google Scholar
  6. 6.
    Kahmen, H., & Reiterer, A. (2006). Videotheodolite Measurement Systems—State of the Art in ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’.Google Scholar
  7. 7.
    Wagner, A., Wasmeier, P., Wunderlich, T., & Ingesand, H. (2014). Vom selbstzielenden Theodolit zur Image Assisted Total Station. Allgemeine Vermessungsnachrichten, 121(5).Google Scholar
  8. 8.
    Möser, M., Hoffmeister, H., Müller, G., Staiger, R., Schlemmer, H., & Wanninger, L. (2012). Handbuch Ingenieurgeodäsie. Berlin: Grundlagen.Google Scholar
  9. 9.
    Luhmann, T., Robson, S., Kyle, S., & Harley, I. (2006). Close range photogrammetry: Principles, methods and applications. Caithness, Scotland: Whittles, Dunbeath.Google Scholar
  10. 10.
    Ehrhart, M., & Lienhart, W. (2017a). Accurate measurements with image-assisted total stations and their prerequisites. Journal of Surveying Engineering, 143(2), 2017.CrossRefGoogle Scholar
  11. 11.
    Lachat, E., Landes, T., & Grussenmeyer, P. (2017). Investigation of a combined surveying and scanning device: The Trimble SX10 scanning total station. Sensors, 17(4).Google Scholar
  12. 12.
    Reiterer, A., & Wagner, A. (2012). System considerations of an image assisted total station—Evaluation and assessment. Allgemeine Vermessungsnachrichten, 3, 83–94. Berlin.Google Scholar
  13. 13.
    Scherer, M., & Lerma, J. L. (2009). From the conventional total station to the prospective image assisted photogrammetric scanning total station: Comprehensive review. Journal of Surveying Engineering, 135(4), 173.CrossRefGoogle Scholar
  14. 14.
    Joeckel, R., Stober, M., & Hueb, W. (2008). Elektronische Entfernungs- und Richtungsmessung und ihre Integration in aktuelle Positionierungsverfahren, 5. Auflage. Heidelberg: Wichmann-Verlag.Google Scholar
  15. 15.
    Vogel, M. (2006). Vom Pixel zur Richtung – Die räumlichen Beziehungen zwischen Abbildungsstrahlen und Tachymeterrichtungen. Dissertation, Technischen Universität Darmstadt.Google Scholar
  16. 16.
    Leica Geosystem AG. (2018c). The MS60 GeoCOM reference manual. Retrieved November 11, 2018, from
  17. 17.
    Rüeger, J. M. (1990). Electronic distance measurement—An introduction. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  18. 18.
    Ehrhart, M., & Lienhart, W. (2017b). Object tracking with robotic total stations: Current technologies and improvements based on image data. Journal of Applied Geodesy, 11(3).
  19. 19.
    Deumlich, F., & Staiger, R. (2002). Instrumentenkunde der Vermessungstechnik. Heidelberg: Wichmann. ISBN 3-87907-305-8.Google Scholar
  20. 20.
    Zeiske, K. (1999). TPS 1100 Professional Series—Eine neue Tachymetergeneration von Leica. VR 61/2.Google Scholar
  21. 21.
    Gojcic, Z., Kalenjuk, S., & Lienhart, W. (2017). Synchronization routine for real-time synchronization of robotic total stations. In INGEO 2017 7th International Conference on Engineering Surveying, Lisbon, Portugal (pp.183–191).Google Scholar
  22. 22.
    Luhmann, T. (2010). Nahbereichsphotogrammetrie. 3. Auflage, Wichmann. Berlin und Offenbach: VDE Verlag GmbH.Google Scholar
  23. 23.
    Sonka, M., Vaclav, H., & Boyle, R. (1994). Image, processing, analysis and machine vision. London: Chapman & Hall Computing.Google Scholar
  24. 24.
    Girod, B. (2013). Digital image processing: Edge detection. Retrieved October 12, 2018, from
  25. 25.
    Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2006). Speeded-up robust features. In 9th European Conference on Computer Vision, 7–13 May 2006.Google Scholar
  26. 26.
    Merziger, G., & Wirth, T. (2010). Repetitorium Höhere Mathematik. 6. Auflage. Barsinghausen: Binomi Verlag.zbMATHGoogle Scholar
  27. 27.
    Shapiro, L. G., & Stockman, G. C. (2001). Computer vision. Upper Saddle River: Prentice Hall.Google Scholar
  28. 28.
    Lowe, G. (1999). Object recognition from local scale-invariant features. In International Conference on Computer Vision, Corfu 1999, Proceedings.Google Scholar
  29. 29.
    Talukder, K. H., & Harada, K. (2007). Haar wavelet based approach for image compression and quality assessment of compressed image. IAENG International Journal of Applied Mathematics, 36(1). ISSN 1992-9978.Google Scholar
  30. 30.
    Muja, M., & Lowe, D. (2012). Fast matching of binary features. In 2012 Ninth Conference on Computer and Robot Vision—CRV’12, IEEE Computer Society, Washington D.C., USA. Proceedings. ISBN 978-0-7695-4683-4.Google Scholar
  31. 31.
    Kybic, J., & Vnucko, I. (2010). Approximate best bin first k-d tree all nearest neighbor search with incremental updates. Research Reports of CMP, Czech Technical University in Prague, No. 10, 2010. Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University. ISSN 121 3-2365.Google Scholar
  32. 32.
    Torr, P., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, Jahrgang 78. ISSN: 1077-3142.Google Scholar
  33. 33.
    Niemeier, W. (2008). Ausgleichsrechnung. Berlin/New York: Walter De Gruyter Verlag.CrossRefGoogle Scholar
  34. 34.
    Torge, W. (1980). Drei- und zweidimensionale Modellbildung. In H. Pelzer (Ed.), Geodätische Netzte in Landes- und Ingenieurvermessung. Stuttgart: Konrad Wittwer.Google Scholar
  35. 35.
    Trimble Inc. (2018). Datasheet Trimble S7 total station. Retrieved November 11, 2018, from
  36. 36.
    Bayer, G., Heck, U., & Mönicke, H.-J. (1989). Einsatz einer CCD-Kamera bei der Objektführung mittels Motortheodolit. Allgemeine Vermessungsnachrichten, 96(11–12), Karlsruhe.Google Scholar
  37. 37.
    Leica Geosystem AG. (2018b). The GeoCOM reference manual. Retrieved November 9, 2018, from
  38. 38.
    Automated Precision Inc. (2018). Laser tracker specifications. Retrieved November 10, 2018, from
  39. 39.
    Leica Geosystems. (2018). Technische Daten TPS1200. Retrieved November 10, 2018, from
  40. 40.
    Kyle, S. (2008). Roll angle in 6DOF tracking. 2008 Coordinate Metrology Society Conference, Charlotte-Concord.Google Scholar
  41. 41.
    Lerke, O., & Schwieger, V. (2015). Evaluierung der Regelgüte für tachymetrisch gesteuerte Fahrzeuge. zfv—Zeitschrift für Geodäsie, Geoinformation und Landmanagement, Heft 4/2015 – 140. Jahrgang.
  42. 42.
    Beetz, A. (2012). Ein modulares Simulationskonzept zur Evaluierung von Positionssensoren sowie Filter- und Regelalgorithmen am Beispiel des automatisierten Straßenbaus. Dissertation, Universität Stuttgart.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Engineering Geodesy, University of StuttgartStuttgartGermany

Personalised recommendations