Skip to main content

Data Exchange and Task of Navigation for Robotic Group

  • Chapter
  • First Online:

Abstract

Robotic group collaboration in a densely cluttered terrain is one of the main problems in mobile robotics control. The chapter describes the basic set of tasks solved in model of robotic group behavior during the distributed search of an object (goal) with the parallel mapping. Navigation scheme uses the benefits of authors original technical vision system (TVS) based on dynamic triangulation principles. According to the TVS, output data were implemented fuzzy logic rules of resolution stabilization for improving the data exchange. Modified dynamic communication network model and implemented propagation of information with a feedback method for data exchange inside the robotic group. For forming the continuous and energy saving trajectory, authors are proposing to use two-steps post processing method of path planning with polygon approximation. Combination of our collective TVS scans fusion and modified dynamic data exchange network forming method with dovetailing of the known path planning methods can improve the robotic motion planning and navigation in unknown cluttered terrain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atyabi, A., Phon-Amnuaisuk, S., & Ho, C. K. (2010). Navigating a robotic swarm in an uncharted 2d landscape. Applied Soft Computing, 10(1), 149–169.

    Article  MATH  Google Scholar 

  2. Levi, P., Meister, E., & Schlachter, F. (2014). Reconfigurable swarm robots produce self-assembling and self-repairing organisms. Robotics and Autonomous Systems, 62(10), 1371–1376.

    Article  Google Scholar 

  3. de Sá, A. O., Nedjah, N., & de Macedo Mourelle, L. (2017). Distributed and resilient localization algorithm for swarm robotic systems. Applied Soft Computing, 57, 738–750.

    Article  Google Scholar 

  4. Teoh, E. R., & Kidd, D. G. (2017). Rage against the machine? Google’s self-driving cars versus human drivers. Journal of Safety Research, 63, 57–60.

    Article  Google Scholar 

  5. Morales, Y., Watanabe, A., Ferreri, F., Even, J., Shinozawa, K., & Hagita, N. (2018). Passenger discomfort map for autonomous navigation in a robotic wheelchair. Robotics and Autonomous Systems, 103, 13–26.

    Article  Google Scholar 

  6. Bond, A. H., & Gasser, L. (1992). A subject-indexed bibliography of distributed artificial intelligence. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1260–1281.

    Article  MATH  Google Scholar 

  7. Bond, A. H., & Gasser, L. (2014). Readings in distributed artificial intelligence. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  8. Boes, J., & Migeon, F. (2017). Self-organizing multi-agent systems for the control of complex systems. Journal of Systems and Software, 134, 12–28.

    Article  Google Scholar 

  9. Tan, Y., & Zheng, Z.-y. (2013). Research advance in swarm robotics. Defence Technology, 9(1), 18–39.

    Google Scholar 

  10. Nebti, S., & Boukerram, A. (2017). Swarm intelligence inspired classifiers for facial recognition. Swarm and Evolutionary Computation, 32, 150–166.

    Article  Google Scholar 

  11. Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1–17.

    Article  Google Scholar 

  12. Parr, L. A., Winslow, J. T., Hopkins, W. D., & de Waal, F. (2000). Recognizing facial cues: Individual discrimination by chimpanzees (pan troglodytes) and rhesus monkeys (Macaca mulatta). Journal of Comparative Psychology, 114(1), 47.

    Article  Google Scholar 

  13. Parr, L. A., & de Waal, F. B. (1999). Visual kin recognition in chimpanzees. Nature, 399(6737), 647.

    Article  Google Scholar 

  14. Shapiro, J. A. (1998). Thinking about bacterial populations as multicellular organisms. Annual Reviews in Microbiology, 52(1), 81–104.

    Article  MathSciNet  Google Scholar 

  15. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Reviews in Microbiology,49(1), 711–745.

    Google Scholar 

  16. Wallraff, H. G., & Wallraff, H. G. (2005). Avian navigation: Pigeon homing as a paradigm. New York: Springer.

    Google Scholar 

  17. Jackson, D. E., & Ratnieks, F. L. (2006). Communication in ants.’ Current Biology, 16(15), R570–R574.

    Article  Google Scholar 

  18. Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. M. (1989). Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76(12), 579–581.

    Article  Google Scholar 

  19. Ravary, F., Lecoutey, E., Kaminski, G., Châline, N., & Jaisson, P. (2007). Individual experience alone can generate lasting division of labor in ants. Current Biology, 17(15), 1308–1312.

    Article  Google Scholar 

  20. Buhl, J., Sumpter, D. J., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., et al. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406.

    Article  Google Scholar 

  21. Bone, Q., & Moore, R. (2008). Biology of fishes. New York: Taylor & Francis.

    Google Scholar 

  22. Pitcher, T., Magurran, A., & Winfield, I. (1982). Fish in larger shoals find food faster. Behavioral Ecology and Sociobiology, 10(2), 149–151.

    Article  Google Scholar 

  23. Moyle, P. B., & Cech, J. J. (2004). Fishes: an introduction to ichthyology. No. 597. Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  24. Dyer, J. R., Ioannou, C. C., Morrell, L. J., Croft, D. P., Couzin, I. D., Waters, D. A., et al. (2008). Consensus decision making in human crowds. Animal Behaviour, 75(2), 461–470.

    Article  Google Scholar 

  25. Marocco, D., & Nolfi, S. (2006). Origins of communication in evolving robots. In International Conference on Simulation of Adaptive Behavior (pp. 789–803). Heidelberg: Springer.

    Google Scholar 

  26. Hayes, A. T., Martinoli, A., & Goodman, R. M. (2003). Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica, 21(4), 427–441.

    Article  Google Scholar 

  27. de Oca, M. A. M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence, 5(3–4), 305–327.

    Google Scholar 

  28. Scheidler, A., Brutschy, A., Ferrante, E., & Dorigo, M. (2016). The k-unanimity rule for self-organized decision-making in swarms of robots. IEEE Transactions on Cybernetics, 46(5), 1175–1188.

    Article  Google Scholar 

  29. Valentini, G., Hamann, H., & Dorigo, M. (2015). Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, (Richland, SC) (pp. 1305–1314). International Foundation for Autonomous Agents and Multiagent Systems.

    Google Scholar 

  30. Wawerla, J., Sukhatme, G. S., & Mataric, M. J. (2002). Collective construction with multiple robots. In 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 3, pp. 2696–2701). Piscataway: IEEE.

    Google Scholar 

  31. Werfel, J., Bar-Yam, Y., & Nagpal, R. (2005). Building patterned structures with robot swarms. In Proceedings of the IJCAI (pp. 1495–1504).

    Google Scholar 

  32. Allwright, M., Bhalla, N., El-faham, H., Antoun, A., Pinciroli, C., & Dorigo, M. (2014). Srocs: Leveraging stigmergy on a multi-robot construction platform for unknown environments. In International Conference on Swarm Intelligence (pp. 158–169). Berlin: Springer.

    Google Scholar 

  33. Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in a swarm-bot. In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005) (pp. 314–322). Berlin: Springer.

    Chapter  Google Scholar 

  34. Tuci, E., Ampatzis, C., Trianni, V., Christensen, A. L., & Dorigo, M. (2008). Self-assembly in physical autonomous robots-the evolutionary robotics approach. In Proceedings of the ALIFE (pp. 616–623).

    Google Scholar 

  35. Trianni, V., Nolfi, S., & Dorigo, M. Cooperative hole avoidance in a swarm-bot. Robotics and Autonomous Systems, 54(2), 97–103 (2006)

    Article  Google Scholar 

  36. O’Grady, R., Groß, R., Christensen, A. L., Dorigo, M. (2010). Self-assembly strategies in a group of autonomous mobile robots,” Autonomous Robots, 28(4), 439–455.

    Article  Google Scholar 

  37. Bashyal, S., & Venayagamoorthy, G. K. (2008, Sept) Human swarm interaction for radiation source search and localization. In 2008 IEEE Swarm Intelligence Symposium (pp. 1–8).

    Google Scholar 

  38. Walker, P., Amraii, S. A., Chakraborty, N., Lewis, M., & Sycara, K. (Sept 2014). Human control of robot swarms with dynamic leaders. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1108–1113).

    Google Scholar 

  39. Kolling, A., Sycara, K., Nunnally, S., & Lewis, M. (June 2013). Human-swarm interaction: An experimental study of two types of interaction with foraging swarms. Journal of Human-Robot Interaction, 2, 103–129.

    Article  Google Scholar 

  40. O’Grady, R., Christensen, A. L., & Dorigo, M. (2009). Swarmorph: Multirobot morphogenesis using directional self-assembly. IEEE Transactions on Robotics, 25(3), 738–743.

    Article  Google Scholar 

  41. Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2009). A reliable distributed algorithm for group size estimation with minimal communication requirements. In International Conference on Advanced Robotics, 2009. ICAR 2009. (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  42. Bayındır, L. (2016). A review of swarm robotics tasks. Neurocomputing,172, 292–321.

    Google Scholar 

  43. Chen, S., & Fang, H. (2005). Modeling and behavior analysis of large-scale social foraging swarm. Control and Decision, 20(12), 1392.

    Google Scholar 

  44. Beni, G. (1988). The concept of cellular robotic system. In IEEE International Symposium on Intelligent Control, 1988. Proceedings (pp. 57–62). Piscataway: IEEE.

    Google Scholar 

  45. Asama, H., Matsumoto, A., & Ishida, Y. (1989). Design of an autonomous and distributed robot system: Actress. In Proceedings of the IROS (vol. 89, pp. 283–290).

    Google Scholar 

  46. Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.

    Article  MATH  Google Scholar 

  47. Payton, D., Estkowski, R., & Howard, M. (2003). Compound behaviors in pheromone robotics. Robotics and Autonomous Systems, 44(3–4), 229–240.

    Article  Google Scholar 

  48. Şahin, E. (2004). Swarm robotics: From sources of inspiration to domains of application. In International Workshop on Swarm Robotics (pp. 10–20). Heidelberg: Springer.

    Google Scholar 

  49. McLurkin, J., & Smith, J. (2004). Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In 7th International Symposium on Distributed Autonomous Robotic Systems (DARS), Citeseer.

    Google Scholar 

  50. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions (Vol. 1, pp. 59–65). IPCB: Instituto Politécnico de Castelo Branco.

    Google Scholar 

  51. Turgut, A. E., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2–4), 97–120.

    Article  Google Scholar 

  52. Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective behaviors. In 2012 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3293–3298). Piscataway: IEEE.

    Chapter  Google Scholar 

  53. Seyfried, J., Szymanski, M., Bender, N., Estaña, R., Thiel, M., & Wörn, H. (2004). The i-swarm project: Intelligent small world autonomous robots for micro-manipulation. In International Workshop on Swarm Robotics (pp. 70–83). Berlin: Springer.

    Google Scholar 

  54. Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social Insects. Annual Review of Entomology, 46(1), 413–440.

    Article  Google Scholar 

  55. Trianni, V., Tuci, E., Ampatzis, C., & Dorigo, M. (2014). Evolutionary swarm robotics: A theoretical and methodological itinerary from individual neuro-controllers to collective behaviours. The Horizons of Evolutionary Robotics (pp. 153–160). New York: ACM .

    Google Scholar 

  56. Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M., Limketkai, B., et al. (2008). Centibots: Very large scale distributed robotic teams. In Experimental Robotics IX (pp. 131–140). Springer.

    Google Scholar 

  57. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.

    Article  Google Scholar 

  58. Rybski, P. E., Burt, I., Dahlin, T., Gini, M., Hougen, D. F., Krantz, D. G., et al. (2001). System architecture for versatile autonomous and teleoperated control of multiple miniature robots. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001 (Vol. 3, pp. 2917-2922). Piscataway: IEEE.

    Google Scholar 

  59. Suárez, P., Iglesias, A., & Gálvez, A. (2018). Make robots be bats: Specializing robotic swarms to the bat algorithm. Swarm and Evolutionary Computation, 44, 113–129.

    Article  Google Scholar 

  60. Vilão, C. O., Perico, D. H., Silva, I. J., Homem, T. P., Tonidandel, F., & Bianchi, R. A. (2014). A single camera vision system for a humanoid robot. In 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol (SBR LARS Robocontrol) (pp. 181–186). Piscataway: IEEE.

    Google Scholar 

  61. Gryaznov, N., & Lopota, A. (2015). Computer vision for mobile on-ground robotics Procedia Engineering, 100, 1376–1380.

    Google Scholar 

  62. Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., et al. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics and Automation Magazine, 21(3), 26–40.

    Article  Google Scholar 

  63. Alenyà, G., Foix, S., & Torras, C. (2014). ToF cameras for active vision in robotics. Sensors and Actuators A: Physical, 218, 10–22.

    Article  Google Scholar 

  64. Fan, Q., Sun, B., Sun, Y. Wu, Y., & Zhuang, X. (2017). Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB. The Journal of Navigation, 70(5), 1079–1097.

    Article  Google Scholar 

  65. Sabo, C., Chisholm, R., Petterson, A., & Cope, A. (2017). A lightweight, inexpensive robotic system for insect vision. Arthropod Structure and Development, 46(5), 689–702.

    Article  Google Scholar 

  66. Wahrmann, D., Hildebrandt, A.-C., Wittmann, R., Sygulla, F., Rixen, D., & Buschmann, T. (2016). Fast object approximation for real-time 3d obstacle avoidance with biped robots. In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 38–45). Piscataway: IEEE.

    Chapter  Google Scholar 

  67. McGuire, K., de Croon, G., De Wagter, C., Tuyls, K., & Kappen, H. J. (2017). Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone. IEEE Robotics and Automation Letters, 2(2), 1070–1076.

    Article  Google Scholar 

  68. Li, J.-H., Ho, Y.-S., & Huang, J.-J. (2018). Line tracking with pixy cameras on a wheeled robot prototype. In 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1–2). Piscataway: IEEE.

    Google Scholar 

  69. Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., et al. (2017). Visual odometry and mapping for autonomous flight using an RGB-D camera. In Robotics Research (pp. 235–252). Cham: Springer.

    Chapter  Google Scholar 

  70. Starr, J. W., & Lattimer, B. (2017). Evidential sensor fusion of long-wavelength infrared stereo vision and 3D-lidar for rangefinding in fire environments. Fire Technology, 53(6), 1961–1983.

    Article  Google Scholar 

  71. Yoo, H. W., Druml, N., Brunner, D., Schwarzl, C., Thurner, T., Hennecke, M., et al. (2018). MEMS-based lidar for autonomous driving. E & I Elektrotechnik und Informationstechnik (pp. 1–8).

    Google Scholar 

  72. Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 41(2), 401–416.

    Article  Google Scholar 

  73. Kinnell, P., Rymer, T., Hodgson, J., Justham, L., & Jackson, M. (2017). Autonomous metrology for robot mounted 3D vision systems. CIRP Annals, 66(1), 483–486.

    Article  Google Scholar 

  74. Šuligoj, F., Šekoranja, B., Švaco, M., & Jerbić, B. (2014). Object tracking with a multiagent robot system and a stereo vision camera. Procedia Engineering, 69, 968–973.

    Article  Google Scholar 

  75. Ferreira, M., Costa, P., Rocha, L., & Moreira, A. P. (2016). Stereo-based real-time 6-D of work tool tracking for robot programing by demonstration. The International Journal of Advanced Manufacturing Technology, 85(1–4), 57–69.

    Article  Google Scholar 

  76. Pellegrini, S., & Iocchi, L. (2007, Dec) Human posture tracking and classification through stereo vision and 3D model matching. EURASIP Journal on Image and Video Processing, 2008, 476151.

    Google Scholar 

  77. Radhakrishnamurthy, H. C., Murugesapandian, P., Ramachandran, N., & Yaacob, S. (2017). Stereo vision system for a bin picking adept robot. Malaysian Journal of Computer Science, 20(1), 91–98.

    Article  Google Scholar 

  78. Sergiyenko, O. Y. (2010). Optoelectronic system for mobile robot navigation. Optoelectronics, Instrumentation and Data Processing, 46(5), 414–428.

    Article  Google Scholar 

  79. Rodriguez-Quinonez, J. C., Sergiyenko, O., Gonzalez-Navarro, F. F., Basaca-Preciado, L., & Tyrsa, V. (2013). Surface recognition improvement in 3D medical laser scanner using Levenberg–Marquardt method. Signal Processing, 93(2), 378–386.

    Article  Google Scholar 

  80. Basaca-Preciado, L. C., Sergiyenko, O. Y., Rodríguez-Quinonez, J. C., Garcia, X., Tyrsa, V. V., Rivas-Lopez, M., et al. (2014). Optical 3D laser measurement system for navigation of autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.

    Article  Google Scholar 

  81. Sergiyenko, O. Y., Ivanov, M. V., Tyrsa, V., Kartashov, V. M., Rivas-López, M., Hernández-Balbuena, D., et al. (2016). Data transferring model determination in robotic group. Robotics and Autonomous Systems, 83, 251–260.

    Article  Google Scholar 

  82. Lindner, L., Sergiyenko, O., Rivas-López, M., Valdez-Salas, B., Rodríguez-Quiñonez, J. C., Hernández-Balbuena, D., et al. (2016). Machine vision system for UAV navigation. In International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  83. Lindner, L., Sergiyenko, O., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Rodríguez-Quiñonez, J. C., et al. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: An International Journal, 44(4), 532–541.

    Article  Google Scholar 

  84. Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Tyrsa, V., Mercorelli, P., Fuentes, W. F., et al. (2015). Continuous 3D scanning mode using servomotors instead of stepping motors in dynamic laser triangulation. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 944–949). Piscataway: IEEE.

    Chapter  Google Scholar 

  85. Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., et al. (2016). Mobile robot vision system using continuous laser scanning for industrial application. Industrial Robot: An International Journal, 43(4), 360–369.

    Article  Google Scholar 

  86. Sergiyenko, O., Hernandez, W., Tyrsa, V., Cruz, L. F. D., Starostenko, O., & Peña-Cabrera, M. (2009). Remote sensor for spatial measurements by using optical scanning. Sensors, 9(7), 5477–5492.

    Article  Google Scholar 

  87. Básaca, L. C., Rodríguez, J., Sergiyenko, O. Y., Tyrsa, V. V., Hernández, W., Hipólito, J. I. N., et al. (2010). Resolution improvement of dynamic triangulation method for 3D vision system in robot navigation task. In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 2886–2891). Piscataway: IEEE.

    Chapter  Google Scholar 

  88. Ivanov, M., Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Flores-Fuentes, W., & Rivas-Lopez, M. (2019). Mobile robot path planning using continuous laser scanning. In Optoelectronics in Machine Vision-Based Theories and Applications (pp. 338–372). Hershey: IGI Global.

    Chapter  Google Scholar 

  89. Garcia-Cruz, X., Sergiyenko, O. Y., Tyrsa, V., Rivas-Lopez, M., Hernandez-Balbuena, D., Rodriguez-Quiñonez, J., et al. (2014). Optimization of 3D laser scanning speed by use of combined variable step. Optics and Lasers in Engineering, 54, 141–151.

    Article  Google Scholar 

  90. Vincent, R., Morisset, B., Agno, A., Eriksen, M., & Ortiz, C. (2008). Centibots: Large-scale autonomous robotic search and rescue experiment. In 2nd International Joint Topical Meeting on Emergency Preparedness & Response and Robotics & Remote Systems.

    Google Scholar 

  91. Grymin, D. J., Neas, C. B., & Farhood, M. (2014). A hierarchical approach for primitive-based motion planning and control of autonomous vehicles. Robotics and Autonomous Systems, 62(2), 214–228.

    Article  Google Scholar 

  92. Kovács, B., Szayer, G., Tajti, F., Burdelis, M., & Korondi, P. (2016). A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robotics and Autonomous Systems, 82, 24–34.

    Article  Google Scholar 

  93. Ali, A. A., Rashid, A. T., Frasca, M., & Fortuna, L. (2016). An algorithm for multi-robot collision-free navigation based on shortest distance. Robotics and Autonomous Systems, 75, 119–128.

    Article  Google Scholar 

  94. Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., et al. (2014). Path planning with modified a star algorithm for a mobile robot. Procedia Engineering, 96, 59–69.

    Article  Google Scholar 

  95. Kawabata, K., Ma, L., Xue, J., Zhu, C., & Zheng, N. (2015). A path generation for automated vehicle based on Bézier curve and via-points. Robotics and Autonomous Systems, 74, 243–252.

    Article  Google Scholar 

  96. Han, L., Yashiro, H., Nejad, H. T. N., Do, Q. H., & Mita, S. (2010, June). Bézier curve based path planning for autonomous vehicle in urban environment. In 2010 IEEE Intelligent Vehicles Symposium (pp. 1036–1042).

    Google Scholar 

  97. Lugo-Cárdenas, I., Flores, G., Salazar, S., & Lozano, R. (2014). Dubins path generation for a fixed wing UAV. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 339–346). Piscataway: IEEE.

    Google Scholar 

  98. Karapetyan, N., Moulton, J., Lewis, J. S., Li, A. Q., O’Kane, J. M., & Rekleitis, I. (2018). Multi-robot Dubins coverage with autonomous surface vehicles. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2373–2379). Piscataway: IEEE.

    Chapter  Google Scholar 

  99. Jha, B., Turetsky, V., & Shima, T. (2018). Robust path tracking by a Dubins ground vehicle. IEEE Transactions on Control Systems Technology, 99, 1–8.

    Article  Google Scholar 

  100. Wang, Z., Liu, L., Long, T., Yu, C., & Kou, J. (2014). Enhanced sparse a* search for UAV path planning using Dubins path estimation. In 2014 33rd Chinese Control Conference (CCC) (pp. 738–742). Piscataway: IEEE.

    Google Scholar 

  101. Braem, B., Latre, B., Moerman, I., Blondia, C., & Demeester, P. (2006). The wireless autonomous spanning tree protocol for multihop wireless body area networks. In 2006 Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (pp. 1–8). Piscataway: IEEE.

    Google Scholar 

  102. Fedyk, D., Ashwood-Smith, P., Allan, D., Bragg, A., & Unbehagen, P. (2012). IS-IS extensions supporting IEEE 802.1aq shortest path bridging. Technical Report.

    Google Scholar 

  103. Nguyen, H. T., & Walker, E. A. (2005). A first course in fuzzy logic. Boca Raton: CRC Press.

    MATH  Google Scholar 

  104. Duarte, M., Silva, F., Rodrigues, T., Oliveira, S. M., & Christensen, A. L. (2014). Jbotevolver: A versatile simulation platform for evolutionary robotics. In Proceedings of the 14th International Conference on the Synthesis & Simulation of Living Systems. MIT Press, Cambridge, MA (pp. 210–211). Citeseer.

    Google Scholar 

  105. Browning, B., & Tryzelaar, E. (2003). Übersim: A multi-robot simulator for robot soccer. In Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 948–949). New York, ACM.

    Book  Google Scholar 

  106. Zhibao, S., Haojie, Z., & Sen, Z. (2017). A robotic simulation system combined USARSIM and RCS library. In 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS) (pp. 240–243). New York, IEEE.

    Book  Google Scholar 

  107. Klein, J., & Spector, L. (2009). 3D multi-agent simulations in the breve simulation environment. In Artificial Life Models in Software (pp. 79–106). New York: Springer.

    Chapter  Google Scholar 

  108. Rohmer, E., Singh, S. P., & Freese, M. (2013). V-rep: A versatile and scalable robot simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1321–1326). Piscataway: IEEE.

    Chapter  Google Scholar 

  109. Michel, O. (2004). Cyberbotics ltd. webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 5.

    Google Scholar 

  110. Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). Rotors’ a modular gazebo MAV simulator framework. In Robot operating system (ROS) (pp. 595–625). Berlin: Springer.

    Chapter  Google Scholar 

  111. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2011). Argos: A modular, multi-engine simulator for heterogeneous swarm robotics. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5027–5034). Piscataway: IEEE.

    Chapter  Google Scholar 

  112. Aşık, O., & Akın, H. L. (2013). Solving multi-agent decision problems modeled as Dec-POMDP: A robot soccer case study. In RoboCup 2012: Robot Soccer World Cup XVI (pp. 130–140). Berlin: Springer.

    Chapter  Google Scholar 

  113. Wang, S., Mao, Z., Zeng, C., Gong, H., Li, S., & Chen, B. (2010). A new method of virtual reality based on Unity3D. In 2010 18th International Conference on Geoinformatics (pp. 1–5). IEEE.

    Google Scholar 

  114. Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 19.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Sergiyenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, M. et al. (2020). Data Exchange and Task of Navigation for Robotic Group. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (eds) Machine Vision and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-030-22587-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22587-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22586-5

  • Online ISBN: 978-3-030-22587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics