Skip to main content

Persistence, Competition, and Evolution

  • Chapter
  • First Online:
The Dynamics of Biological Systems

Part of the book series: Mathematics of Planet Earth ((MPE,volume 4))

Abstract

In this chapter we discuss some reaction–diffusion models for single and multiple populations in spatially heterogeneous environments and advective environments. Our goal is to illustrate some interesting, and perhaps surprising, effects of spatial heterogeneity and diffusion on the population dynamics. Specific topics include the logistic model, linear eigenvalue problem with indefinite weight, Lotka–Volterra competition models, reaction–diffusion models in advective environments, and the evolution of dispersal. We will introduce some basic tools for reaction–diffusion equations such as the super-sub solution method, the variational principle for principal eigenvalues, Lyapunov functionals, comparison principles for parabolic equations and systems, etc. Some recent developments will be discussed. In addition, problems with various difficulties ranging from elementary exercises to open research questions will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Averill, K.-Y. Lam, Y. Lou, The role of advection in a two-species competition model: a bifurcation approach. Mem. Am. Math. Soc. 245(1161), v+117 (2017)

    Google Scholar 

  2. X.L. Bai, X.Q. He, F. Li, An optimization problem and its application in population dynamics. Proc. Am. Math. Soc. 144, 2161–2170 (2016)

    Article  MathSciNet  Google Scholar 

  3. K.J. Brown, S.S. Lin, On the existence of positive eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980)

    Article  MathSciNet  Google Scholar 

  4. R.S. Cantrell, C. Cosner, Diffusive logistic equations with indefinite weights: population models in a disrupted environments. Proc. R. Soc. Edinb. 112A, 293–318 (1989)

    Article  MathSciNet  Google Scholar 

  5. R.S. Cantrell, C. Cosner, The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338 (1991)

    Article  MathSciNet  Google Scholar 

  6. R.S. Cantrell, C. Cosner, Should a park be an island? SIAM J. Appl. Math. 53, 219–252(1993)

    Article  MathSciNet  Google Scholar 

  7. R.S. Cantrell, C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145 (1998)

    Article  MathSciNet  Google Scholar 

  8. R.S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Series in Mathematical and Computational Biology (Wiley, Chichester, 2003)

    Google Scholar 

  9. R.S. Cantrell, C. Cosner, Y. Lou, Movement towards better environments and the evolution of rapid diffusion. Math Biosci. 204, 199–214 (2006)

    Article  MathSciNet  Google Scholar 

  10. R.S. Cantrell, C. Cosner, Y. Lou, Advection mediated coexistence of competing species. Proc. R. Soc. Edinb. 137A, 497–518 (2007)

    Article  MathSciNet  Google Scholar 

  11. C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal. Discr. Cont. Dyn. Syst. 34, 1701–1745 (2014)

    Article  MathSciNet  Google Scholar 

  12. R.H. Cui, Y. Lou, Spatial SIS epidemic models in advective environments. J. Differ. Equ. 261, 3305–3343 (2016)

    Article  Google Scholar 

  13. R.H. Cui, K.-Y. Lam, Y. Lou, Dynamics and asymptotic profiles of steady states to an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    Article  MathSciNet  Google Scholar 

  14. D. DeAngelis, W.-M. Ni, B. Zhang, Dispersal and spatial heterogeneity: single species. J. Math. Biol. 72, 239–254 (2016)

    Article  MathSciNet  Google Scholar 

  15. W. Ding, H. Finotti, S. Lenhart, Y. Lou, Q. Ye, Optimal control of growth coefficient on a steady-state population model. Nonlinear Anal. Real World Appl. 11, 688–704 (2010)

    Article  MathSciNet  Google Scholar 

  16. J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski, The evolution of slow dispersal rates: a reaction-diffusion model. J. Math. Biol. 37, 61–83 (1998)

    Article  MathSciNet  Google Scholar 

  17. M. Golubitsky, W. Hao, K.-Y. Lam, Y. Lou, Dimorphism by singularity theory in a model for river ecology. Bull. Math. Biol. 79, 1051–1069 (2017)

    Article  MathSciNet  Google Scholar 

  18. M. Golubitsky, W. Hao, K.-Y. Lam, Y. Lou, Evolution of dispersal for a river species in homogeneous advective environment, in preparation

    Google Scholar 

  19. W. Hao, K.-Y. Lam, Y. Lou, Concentration phenomena in an integro-PDE model for evolution of conditional dispersal. Indiana Univ. Math. J. 68, 881–923 (2019)

    Article  MathSciNet  Google Scholar 

  20. A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251 (1983)

    Article  Google Scholar 

  21. X. He, W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity. J. Differ. Equ. 254, 528–546 (2013)

    Google Scholar 

  22. X. He, W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: the general case. J. Differ. Equ. 254, 4088–4108 (2013)

    Article  MathSciNet  Google Scholar 

  23. X. He, W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Commun. Pure Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  Google Scholar 

  24. X. He, W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, II. Calc. Var. Partial Differ. Equ. 55, Art. 25, 20 (2016)

    Google Scholar 

  25. S.-B. Hsu, H. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083–4094 (1996)

    Article  MathSciNet  Google Scholar 

  26. V. Hutson, K. Mischaikow, P. Pol\(\acute {a}\breve {c}\)ik, The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)

    Google Scholar 

  27. V. Hutson, Y. Lou, K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics. J. Differ. Equ. 185, 97–136 (2002)

    Article  MathSciNet  Google Scholar 

  28. V. Hutson, Y. Lou, K. Mischaikow, P. Poláčik, Competing species near the degenerate limit. SIAM J. Math. Anal. 35, 453–491 (2003)

    Article  MathSciNet  Google Scholar 

  29. V. Hutson, Y. Lou, K. Mischaikow, Convergence in competition models with small diffusion coefficients. J. Differ. Equ. 211, 135–161 (2005)

    Article  MathSciNet  Google Scholar 

  30. C.Y. Kao, Y. Lou, E. Yanagida, Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5, 315–335 (2008)

    Article  MathSciNet  Google Scholar 

  31. K.-Y. Lam, Stability of Dirac concentrations in an integro-PDE Model for evolution of dispersal. Calc. Var. Partial Differ. Equ. 56, 32 pp. (2017)

    Google Scholar 

  32. K.-Y. Lam, Y. Lou, An integro-PDE model for evolution of random dispersal. J. Funct. Anal. 272, 1755–1790 (2017)

    Article  MathSciNet  Google Scholar 

  33. K.-Y. Lam, Y. Lou, F. Lutscher, Evolution of dispersal in closed advective environments. J. Biol. Dyn. 9, 188–212 (2015)

    Article  MathSciNet  Google Scholar 

  34. K.-Y. Lam, W.-M. Ni, Uniqueness and complete dynamics of the Lotka-Volterra competition diffusion system. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    Article  MathSciNet  Google Scholar 

  35. R. Li, Y. Lou, Some monotone properties for solutions to a reaction-diffusion model. Discr. Contin. Dyn. Syst. B 24, 4445–4455 (2019)

    MathSciNet  MATH  Google Scholar 

  36. S. Liang, Y. Lou, On the dependence of population size upon random dispersal rate. Discrete Contin. Dyn. Syst. B 17, 2771–2788 (2012)

    Article  MathSciNet  Google Scholar 

  37. Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223, 400–426 (2006)

    Article  MathSciNet  Google Scholar 

  38. Y. Lou, F. Lutscher, Evolution of dispersal in open advective environments. J. Math. Biol. 69, 1319–1342 (2014)

    Article  MathSciNet  Google Scholar 

  39. Y. Lou, B. Wang, Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment. J. Fixed Point Theory Appl. 19, 755–772 (2017)

    Article  MathSciNet  Google Scholar 

  40. Y. Lou, E. Yanagida, Minimization of the principal eigenvalue with indefinite weight and applications to population dynamics. Jpn J. Indus. Appl. Math. 23, 275–292 (2006)

    Article  Google Scholar 

  41. Y. Lou, P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ. 259, 141–171 (2015)

    Article  MathSciNet  Google Scholar 

  42. Y. Lou, D.M. Xiao, P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete Contin. Dyn. Syst. A 36, 953–969 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Y. Lou, X.-Q. Zhao, P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments. J. Math. Pures Appl. 121, 47–82 (2019)

    Article  MathSciNet  Google Scholar 

  44. F. Lutscher, E. Pachepsky, M.A. Lewis, The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    Article  MathSciNet  Google Scholar 

  45. F. Lutscher, M.A. Lewis, E. McCauley, Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68, 2129–2160 (2006)

    Article  MathSciNet  Google Scholar 

  46. K. Nagahara, E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth. Calc. Var. Partial Differ. Equ. 57, Art 80, 14pp (2018)

    Google Scholar 

  47. W.-M. Ni, The Mathematics of Diffusion. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82 (SIAM, Philadelphia, 2011)

    Google Scholar 

  48. C.V. Pao, Nonlinear Parabolic and Elliptic Equations (Springer, Berlin, 2012)

    Google Scholar 

  49. B. Perthame, P.E. Souganidis, Rare mutations limit of a steady state dispersal evolution model. Math. Model. Nat. Phenom. 11, 154–166 (2016)

    Article  MathSciNet  Google Scholar 

  50. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations Corrected reprint of the 1967 original (Springer, New York, 1984)

    Google Scholar 

  51. H.L. Smith, Monotone dynamical systems, in An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 41 (American Mathematical Society, Providence, 1995)

    Google Scholar 

  52. D.C. Speirs, W.S. Gurney, Population persistence in rivers and estuaries. Ecology 82, 1219–1237 (2001)

    Article  Google Scholar 

  53. O. Vasilyeva, F. Lutscher, Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q. 18, 439–469 (2011)

    MathSciNet  MATH  Google Scholar 

  54. O. Vasilyeva, F. Lutscher, Competition in advective environments. Bull. Math. Biol. 74, 2935–2958 (2012)

    Article  MathSciNet  Google Scholar 

  55. P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection. Calc. Var. Partial Differ. Equ. 55, Art. 137, 29 (2016)

    Google Scholar 

  56. X.-Q. Zhao, P. Zhou, On a Lotka-Volterra competition model: the effects of advection and spatial variation. Calc. Var. Partial Differ. Equ. 55, Art. 73, 25 (2016)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank the referee for his comments and suggestions which help improve the presentation. KYL and YL were partially supported by the NSF grant DMS-1411476 and DMS-1853561. Part of the work was done during the visit of YL to the University of Alberta to participate in the 2016 Séminaire de Mathématiques Supérieures: Dynamics of Biological Systems Summer School, and he thanks the organizers for the warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lam, KY., Lou, Y. (2019). Persistence, Competition, and Evolution. In: Bianchi, A., Hillen, T., Lewis, M., Yi, Y. (eds) The Dynamics of Biological Systems. Mathematics of Planet Earth, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-22583-4_8

Download citation

Publish with us

Policies and ethics