Skip to main content

Modeling of Molecular Networks

  • Chapter
  • First Online:

Part of the book series: Mathematics of Planet Earth ((MPE,volume 4))

Abstract

In biomolecular systems, various non-identical molecules interact in diverse ways. The field of systems biology aims to understand how the components and interactions of biological systems give rise to the system’s behavior and phenotypes. Researchers have used molecular networks and dynamic models to represent and understand biological systems. In this chapter, we introduce the network representation and the graph measures that quantify its topological properties. We describe how to build a discrete dynamic (Boolean) model of a biological system from experimental data, and how to use the model to provide insights into emergent phenomena and make useful predictions. We also introduce methods to bridge the network’s topological and dynamical properties. We use real biological system involved in complex disease to demonstrate the theoretical framework. Discrete dynamical models, especially Boolean networks, benefit from the current high-throughput technologies and large amounts of qualitative data and provide insight to large-scale systems, where continuous modeling is not possible yet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O.E. Akman, S. Watterson, A. Parton, N. Binns, A.J. Millar, P. Ghazal, Digital clocks: simple Boolean models can quantitatively describe circadian systems. J. R. Soc. Interface 9(74), 2365–2382 (2012)

    Article  Google Scholar 

  2. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Albert, H.G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (July 2003)

    Article  MathSciNet  Google Scholar 

  4. R. Albert, R. Robeva, Chapter 4-signaling networks: asynchronous Boolean models, in Algebraic and Discrete Mathematical Methods for Modern Biology, ed. by R.S. Robeva (Academic Press, Boston, 2015), pp. 65–91

    Chapter  Google Scholar 

  5. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky, K. Westbrooks, A novel method for signal transduction network inference from indirect experimental evidence. J. Comput. Biol. 14(7), 927–949 (2007)

    Article  MathSciNet  Google Scholar 

  6. I. Albert, J. Thakar, S. Li, R. Zhang, R. Albert, Boolean network simulations for life scientists. Source Code Biol. Med. 3, 16 (2008)

    Article  Google Scholar 

  7. M. Aldana, S. Coppersmith, L.P. Kadanoff, Perspectives and problems in nonlinear science: a celebratory volume in honor of Lawrence Sirovich, in Chapter Boolean Dynamics with Random Couplings (2003), pp. 23–89

    Chapter  Google Scholar 

  8. B.B. Aldridge, J. Saez-Rodriguez, J.L. Muhlich, P.K. Sorger, D.A. Lauffenburger, Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/Insulin-induced signaling. PLoS Comput. Biol. 5(4), 1–13 (2009)

    Article  Google Scholar 

  9. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, 1st edn. (Chapman and Hall/CRC, Boca Raton, July 2006)

    MATH  Google Scholar 

  10. A.-L. Barabási, M. Pósfai, Network Science ( Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  11. V. Batagelj, A. Mrvar, Pajek—Analysis and Visualization of Large Networks (Springer, Berlin, 2002), pp. 477–478

    MATH  Google Scholar 

  12. S. Bornholdt, Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5(Suppl 1), S85–S94 (2008)

    Google Scholar 

  13. C. Campbell, R. Albert, Stabilization of perturbed Boolean network attractors through compensatory interactions. BMC Syst. Biol. 8(1), 53 (2014)

    Article  Google Scholar 

  14. B.J. Campbell, L. Yu, J.F. Heidelberg, D.L. Kirchman, Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. 108(31), 12776–12781 (2011)

    Article  Google Scholar 

  15. C. Chaouiya, Petri net modelling of biological networks. Brief. Bioinform. 8(4), 210 (2007)

    Article  Google Scholar 

  16. C. Chaouiya, A. Naldi, D. Thieffry, Logical modelling of gene regulatory networks with GINsim. Methods Mol. Biol. 804, 463–79 (2012)

    Article  Google Scholar 

  17. C. Chaouiya, D. Bérenguier, S.M. Keating, A. Naldi, M.P. van Iersel, N. Rodriguez, A. Dräger, F. Büchel, T. Cokelaer, B. Kowal, B. Wicks, E. Gonçalves, J. Dorier, M. Page, P.T. Monteiro, A. von Kamp, I. Xenarios, H. de Jong, M. Hucka, S. Klamt, D. Thieffry, N. Le Novère, J. Saez-Rodriguez, T. Helikar, SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst. Biol. 7(1), 135 (2013)

    Article  Google Scholar 

  18. E.M. Clarke, O. Grumberg, D. Peled, Model-Checking (MIT Press, Cambridge, 1999)

    MATH  Google Scholar 

  19. A. Di Cara, A. Garg, G. De Micheli, I. Xenarios, L. Mendoza, Dynamic simulation of regulatory networks using SQUAD. BMC Bioinf. 8, 462 (2007)

    Article  Google Scholar 

  20. L.C. Freeman, A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (Mar 1977)

    Article  Google Scholar 

  21. T.D. Gilmore, Introduction to NF-κB: players, pathways, perspectives. Oncogene 25(51), 6680–6684 (2006)

    Article  Google Scholar 

  22. B.D. Gomperts, P.E.R. Tatham, I.M. Kramer, Signal Transduction (Elsevier/Academic Press, Amsterdam, 2009)

    Google Scholar 

  23. K. Guruharsha, J.-F. Rual, B. Zhai, J. Mintseris, P. Vaidya, N. Vaidya, C. Beekman, C. Wong, D.Y. Rhee, O. Cenaj, E. McKillip, S. Shah, M. Stapleton, K.H. Wan, C. Yu, B. Parsa, J.W. Carlson, X. Chen, B. Kapadia, K. VijayRaghavan, S.P. Gygi, S.E. Celniker, R.A. Obar, S. Artavanis-Tsakonas, A protein complex network of drosophila melanogaster. Cell 147(3), 690–703 (2011)

    Article  Google Scholar 

  24. A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics, and function using NetworkX. in Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena (2008), pp. 11–15

    Google Scholar 

  25. T. Helikar, J.A. Rogers, ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists. BMC Syst. Biol. 3, 58 (2009)

    Article  Google Scholar 

  26. T. Helikar, B. Kowal, J.A. Rogers, A cell simulator platform: the cell collective. Clin. Pharmacol. Ther. 93, 393–395 (2013)

    Article  Google Scholar 

  27. F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, G. Blekherman, A. Veliz-Cuba, R. Laubenbacher, ADAM: analysis of discrete models of biological systems using computer algebra. BMC Bioinf. 12, 295 (2011)

    Article  Google Scholar 

  28. H. Ikushima K. Miyazono, TGFβ signalling: a complex web in cancer progression. Nat. Rev. Cancer 10(6), 415–424 (2010)

    Article  Google Scholar 

  29. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  30. H. Jeong, S.P. Mason, A.-L. Barabási, Z.N. Oltvai, Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  31. S. Kachalo, R. Zhang, E. Sontag, R. Albert, B. DasGupta, Net-synthesis: a software for synthesis, inference and simplification of signal transduction networks. Bioinformatics 24(2), 293 (2008)

    Article  Google Scholar 

  32. G. Karlebach, R. Shamir, Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

    Article  Google Scholar 

  33. S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, 1st edn. (Oxford University Press, Oxford, 1993)

    Google Scholar 

  34. T.K. Kerppola, Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protocols 1(3), 1278–1286 (2006)

    Article  Google Scholar 

  35. H.A. Kestler, C. Wawra, B. Kracher, M. Kühl, Network modeling of signal transduction: establishing the global view. BioEssays 30(11–12), 1110–1125 (2008)

    Article  Google Scholar 

  36. S. Klamt, J. Saez-Rodriguez, E.D. Gilles, Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2 (2007)

    Article  Google Scholar 

  37. K. Klemm, S. Bornholdt, Stable and unstable attractors in Boolean networks. Phys. Rev. E 72, 055101 (Nov 2005)

    Article  MathSciNet  Google Scholar 

  38. J. Krumsiek, S. Pölsterl, D.M. Wittmann, F.J. Theis, Odefy–from discrete to continuous models. BMC Bioinf. 11, 233 (2010)

    Article  Google Scholar 

  39. F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  40. S. Li, S.M. Assmann, R. Albert, Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 4(10), 1–17 (Sept 2006)

    Article  Google Scholar 

  41. J.O. Liu, Everything you need to know about the yeast two-hybrid system. Nat. Struct. Mol. Biol. 5(7), 535–536 (Jul 1998)

    Article  Google Scholar 

  42. Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Controllability of complex networks. Nature 473(7346), 167–173 (2011)

    Article  Google Scholar 

  43. A. Ma’ayan, S.L. Jenkins, S. Neves, A. Hasseldine, E. Grace, B. Dubin-Thaler, N.J. Eungdamrong, G. Weng, P.T. Ram, J.J. Rice, A. Kershenbaum, G.A. Stolovitzky, R.D. Blitzer, R. Iyengar, Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 309(5737), 1078–1083 (2005)

    Article  Google Scholar 

  44. K. Markham, Y. Bai, G. Schmitt-Ulms, Co-immunoprecipitations revisited: an update on experimental concepts and their implementation for sensitive interactome investigations of endogenous proteins. Anal. Bioanal. Chem. 389(2), 461–473 (2007)

    Article  Google Scholar 

  45. E.J. McCluskey, Minimization of Boolean functions. Bell Syst. Tech. J. 35(6), 1417–1444 (1956)

    Article  MathSciNet  Google Scholar 

  46. C. Müssel, M. Hopfensitz, H.A. Kestler, BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26, 1378–1380 (2010)

    Article  Google Scholar 

  47. A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, C. Chaouiya, Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009)

    Article  Google Scholar 

  48. M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

    Book  MATH  Google Scholar 

  49. G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  50. B. Palsson, Systems Biology: Properties of Reconstructed Networks (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  51. J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz, F.D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Simon, M. Boxem, S. Milstein, J. Rosenberg, D.S. Goldberg, L.V. Zhang, S.L. Wong, G. Franklin, S. Li, J.S. Albala, J. Lim, C. Fraughton, E. Llamosas, S. Cevik, C. Bex, P. Lamesch, R.S. Sikorski, J. Vandenhaute, H.Y. Zoghbi, A. Smolyar, S. Bosak, R. Sequerra, L. Doucette-Stamm, M.E. Cusick, D.E. Hill, F.P. Roth, M. Vidal, Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062), 1173–1178 (2005)

    Article  Google Scholar 

  52. A. Saadatpour, R. Albert, Boolean modeling of biological regulatory networks: a methodology tutorial. Methods 62(1), 3–12 (2013)

    Article  Google Scholar 

  53. A. Saadatpour, R.-S. Wang, A. Liao, X. Liu, T.P. Loughran, I. Albert, R. Albert, Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput. Biol. 7(11), e1002267 (2011)

    Article  Google Scholar 

  54. A. Saadatpour, R. Albert, T.C. Reluga, A reduction method for Boolean network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst. 12(4), 1997–2011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Samaga, J. Saez-Rodriguez, L.G. Alexopoulos, P.K. Sorger, S. Klamt, The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), 1–19 (2009)

    Article  Google Scholar 

  56. R. Schlatter, K. Schmich, I. Avalos Vizcarra, P. Scheurich, T. Sauter, C. Borner, M. Ederer, I. Merfort, O. Sawodny, ON/OFF and beyond–A Boolean model of apoptosis. PLoS Comput. Biol. 5(12), 1–13 (Dec 2009)

    Article  Google Scholar 

  57. M.E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, T. Ideker, Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3), 431 (2011)

    Article  Google Scholar 

  58. S.N. Steinway, J.G. Zañudo, W. Ding, C.B. Rountree, D.J. Feith, T.P. Loughran, R. Albert, Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic Hedgehog and Wnt pathway activation. Cancer Res. 74(21), 5963–5977 (2014)

    Article  Google Scholar 

  59. Z. Sun, R. Albert, Node-independent elementary signaling modes: a measure of redundancy in Boolean signaling transduction networks. Netw. Sci. 4(3), 273–292 (2016)

    Article  Google Scholar 

  60. C.D.A. Terfve, T. Cokelaer, D. Henriques, A. Macnamara, E. Gonçalves, M.K. Morris, M. van Iersel, D.A. Lauffenburger, J. Saez-Rodriguez, CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol. 6, 133 (2012)

    Article  Google Scholar 

  61. J. Thakar, A.K. Pathak, L. Murphy, R. Albert, I.M. Cattadori, Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput. Biol. 8(1), 1–19 (Jan 2012)

    Article  Google Scholar 

  62. R. Thomas, R. d’Ari, Biological Feedback (CRC Press, Boca Raton, 1990)

    MATH  Google Scholar 

  63. J.J. Tyson, K.C. Chen, B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  64. P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, J.M. Rothberg. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770), 623–627 (Feb 2000)

    Article  Google Scholar 

  65. G. von Dassow, E. Meir, E.M. Munro, G.M. Odell, The segment polarity network is a robust developmental module. Nature 406(6792), 188–192 (July 2000)

    Article  Google Scholar 

  66. R.-S. Wang, R. Albert, Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst. Biol. 5(1), 44 (2011)

    Google Scholar 

  67. R.-S. Wang, A. Saadatpour, R. Albert, Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)

    Article  Google Scholar 

  68. G. Yang, C. Campbell, R. Albert, Compensatory interactions to stabilize multiple steady states or mitigate the effects of multiple deregulations in biological networks. Phys. Rev. E 94, 062316 (Dec 2016)

    Article  Google Scholar 

  69. J.G.T. Zañudo, R. Albert, An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos Interdiscip. J. Nonlinear Sci. 23(2), 025111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. J.G.T. Zañudo, R. Albert, Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput. Biol. 11(4) (2015)

    Article  Google Scholar 

  71. J.G.T. Zañudo, G. Yang, R. Albert, Structure-based Control of Complex Networks with Nonlinear Dynamics, Proc. Natl. Acad. Sci. USA 14(28), 7234–7239 (2017)

    Article  Google Scholar 

  72. R. Zhang, M.V. Shah, J. Yang, S.B. Nyland, X. Liu, J.K. Yun, R. Albert, T.P. Loughran, Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 105(42), 16308–16313 (2008)

    Article  Google Scholar 

  73. J. Zheng, D. Zhang, P.F. Przytycki, R. Zielinski, J. Capala, T.M. Przytycka, SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics 26(1), 141–142 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réka Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, G., Albert, R. (2019). Modeling of Molecular Networks. In: Bianchi, A., Hillen, T., Lewis, M., Yi, Y. (eds) The Dynamics of Biological Systems. Mathematics of Planet Earth, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-22583-4_2

Download citation

Publish with us

Policies and ethics