Skip to main content

Dynamical Systems in Biology: A Short Introduction

  • Chapter
  • First Online:
The Dynamics of Biological Systems

Part of the book series: Mathematics of Planet Earth ((MPE,volume 4))

Abstract

The contributions to this textbook are based on a summer school on Dynamics of Biological Systems as part of the series “Séminaire de Mathématiques Supérieures,” which was held at the University of Alberta in June 2016. The lectures cover a wide variety of topics and it would be presumptuous to assume that all readers are equally familiar with all the background material. Hence we use this introduction to lay down basic concepts on mathematical modelling, stability analysis, nondimensionalizations, partial and ordinary differential equations, basic population and epidemic models, random walk models, travelling wave solutions, and the critical domain size problem. Experienced researchers can easily skip this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is based on the more detailed presentation in Thieme [33].

References

  1. L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology (Prentice Hall, Upper Saddle River, 2003)

    Google Scholar 

  2. F. Brauer, C. Castillo-Chavez, Mathematical Models for Communicable Diseases (SIAM, Hoboken, 2013)

    MATH  Google Scholar 

  3. N.F. Britton, Reaction–Diffusion Equations and Their Applications to Biology (Academic Press, London, 1986)

    MATH  Google Scholar 

  4. N.F. Britton, Essential Mathematical Biology (Springer, Heidelberg, 2003)

    Book  MATH  Google Scholar 

  5. G. de Vries, T. Hillen, M. Lewis, J. Müller, B. Schönfisch, A Course in Mathematical Biology (SIAM, Philadelphia, 2006)

    Book  MATH  Google Scholar 

  6. R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edn. (Addison-Wesley, Reading, 1989)

    MATH  Google Scholar 

  7. O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  8. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Edelstein-Keshet, J. Watmough, Grunbaum. D, Do travelling band solutions describe cohesive swarms? An investigation for migratory locust. J. Math. Biol. 36, 515–549 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  11. R.A. Fisher, The advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937)

    Article  MATH  Google Scholar 

  12. B.H. Gilding, R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction (Birkhauser, Basel, 2004)

    Book  MATH  Google Scholar 

  13. M. Golubitsky, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory: Vol. I. Applied Mathematical Sciences vol. 51 (Springer, New York, 1985)

    Google Scholar 

  14. M. Golubitsky, I.N. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory: Vol. II. Applied Mathematical Sciences vol. 69 (Springer, New York, 1988)

    Google Scholar 

  15. J. Guckenheimer, P.J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Heidelberg, 1983)

    Book  MATH  Google Scholar 

  16. K.P. Hadeler, Topics in Mathematical Biology (Springer, Heidelberg, 2018)

    MATH  Google Scholar 

  17. T. Hillen, On the L 2-moment closure of transport equations: the Cattaneo approximation. Discr. Cont. Dyn. Syst. B 4(4), 961–982 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Hillen, Existence theory for correlated random walks on bounded domains. Can. Appl. Math. Q. 18(1), 1–40 (2010)

    MathSciNet  MATH  Google Scholar 

  19. T. Hillen, E. Leonard, H. van Roessel, Partial Differential Equations; Theory and Completely Solved Problems (Wiley, Hoboken, 2012)

    MATH  Google Scholar 

  20. M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, New York, 1974)

    MATH  Google Scholar 

  21. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Ser. A 115, 700–721 (1927). [Reprinted in: G. Oliveira–Pinto, B.W. Conolly, Applicable Mathematics of Nonphysical Phenomena (Ellis Horwood, Chichester, 1982), pp. 222–247]

    Google Scholar 

  22. A.N. Kolmogorov, I.G. Petrovskii, Piskunov N.S, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjol. Moskovskovo Gos. Univ. 17, 1–72 (1937)

    Google Scholar 

  23. M. Kot, Elements of Mathematical Ecology (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  24. M.A. Lewis, B. Li, H.F Weinberger, Spreading speed and the linear determinacy for two-species competition models. J. Math. Biol. 45(3), 219–233 (2002)

    Google Scholar 

  25. F. Lutscher, E. Pachepsky, M.A. Lewis, The effect of dispersal patterns on stream populations. SIAM Rev. 478, 749–7725 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.D. Murray, Mathematical Biology (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  27. A. Okubo, S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives (Springer, Berlin, 2002)

    MATH  Google Scholar 

  28. J. Palis, W. de Melo, Geometric Theory of Dynamical Systems (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  29. L. Perko, Differential Equations and Dynamical Systems. Texts in Applied Mathematics (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  30. B. Perthame, Transport Equations in Biology (Birkhäuser, Basel, 2007)

    Google Scholar 

  31. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, Berlin, 1982)

    MATH  Google Scholar 

  32. S. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 2000)

    Google Scholar 

  33. H.R. Thieme, Mathematics in Population Biology (Princeton University Press, Princeton, 2003)

    Book  MATH  Google Scholar 

  34. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. N.G. van. Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hillen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hillen, T., Lewis, M.A. (2019). Dynamical Systems in Biology: A Short Introduction. In: Bianchi, A., Hillen, T., Lewis, M., Yi, Y. (eds) The Dynamics of Biological Systems. Mathematics of Planet Earth, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-22583-4_1

Download citation

Publish with us

Policies and ethics