Improved Volume Scattering

  • Haysn HornbeckEmail author
  • Usman Alim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11542)


This paper examines two approaches to improve the realism of volume scattering functions. The first uses a convex combination of multiple Henyey-Greenstein distributions to approximate a more complicated scattering distribution, while the second allows negative coefficients. The former is already supported in some renderers, the latter is not and carries a significant performance penalty. Chromatic scattering is also explored, and found to be beneficial in some circumstances. Source code is publicly available under an open-source license.


Volume scattering Volume rendering Computer graphics Path tracing 


  1. 1.
  2. 2.
    Alefeld, G.E., Potra, F.A., Shi, Y.: Algorithm 748: enclosing zeros of continuous functions. ACM Trans. Math. Softw. 21(3), 327–344 (1995)CrossRefGoogle Scholar
  3. 3.
    Bitterli, B., et al.: A radiative transfer framework for non-exponential media. In: SIGGRAPH Asia 2018 Technical Papers on - SIGGRAPH Asia 2018, pp. 1–17. ACM Press, Tokyo (2018)Google Scholar
  4. 4.
    Bouthors, A., Neyret, F., Max, N., Bruneton, E., Crassin, C.: Interactive multiple anisotropic scattering in clouds, p. 173. ACM Press (2008)Google Scholar
  5. 5.
    Burley, B., et al.: The design and evolution of disney’s hyperion renderer. ACM Trans. Graph. 37(3), 1–22 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarberg, P., Jarosz, W., Akenine-Möller, T., Jensen, H.W.: Wavelet importance sampling: efficiently evaluating products of complex functions, vol. 24, pp. 1166–1175. ACM (2005).
  7. 7.
    Deng, Y., Ni, Y., Li, Z., Mu, S., Zhang, W.: Toward real-time ray tracing: a survey on hardware acceleration and microarchitecture techniques. ACM Comput. Surv. 50(4), 1–41 (2017)CrossRefGoogle Scholar
  8. 8.
    Du, H.: Mie-scattering calculation. Appl. Opt. 43(9), 1951–1956 (2004)CrossRefGoogle Scholar
  9. 9.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures, vol. 1. Addison-Wesley, Reading (1963)Google Scholar
  10. 10.
    Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pacific 125(925), 306–312 (2013). arXiv: 1202.3665CrossRefGoogle Scholar
  11. 11.
    Frisvad, J.R.: Importance sampling the Rayleigh phase function. J. Opt. Soc. Am. A 28(12), 2436 (2011)CrossRefGoogle Scholar
  12. 12.
    Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32(6), 162:1–162:13 (2013)CrossRefGoogle Scholar
  13. 13.
    Goodman, T.N., Micchelli, C.A., Rodriguez, G., Seatzu, S.: Spectral factorization of Laurent polynomials. Adv. Comput. Math. 7(4), 429–454 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gritz, L., Stein, C., Kulla, C., Conty, A.: Open shading language. In: ACM SIGGRAPH 2010 Talks, p. 33. ACM (2010)Google Scholar
  15. 15.
    Hege, H.C., Höllerer, T., Stalling, D.: Volume Rendering - Mathematicals Models and Algorithmic Aspects, June 1993.
  16. 16.
    Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C.: Multiple-scattering microfacet BSDFs with the Smith model. ACM Trans. Graph. (TOG) 35(4), 58 (2016)Google Scholar
  17. 17.
    Henyey, L.G., Greenstein, J.L.: Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)CrossRefGoogle Scholar
  18. 18.
    Hess, M., Koepke, P., Schult, I.: Optical properties of aerosols and clouds: the software package OPAC. Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998)CrossRefGoogle Scholar
  19. 19.
    Hoffman, M.D., Gelman, A.: The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
  21. 21.
    Imageworks, S.P.: Open shading language readme (2018).
  22. 22.
    Jakob, W.: Mitsuba renderer (2010)Google Scholar
  23. 23.
    Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34(4), 122:1–122:12 (2015)CrossRefGoogle Scholar
  24. 24.
    Mishchenko, M.I., Macke, A.: How big should hexagonal ice crystals be to produce halos? Appl. Opt. 38(9), 1626–1629 (1999)CrossRefGoogle Scholar
  25. 25.
    Newton, R.G.: Scattering Theory of Waves and Particles. Texts and Monographs in Physics, 2nd edn. Springer, New York (1982). Scholar
  26. 26.
    Scully, M.O., Walther, H., Schleich, W.: Feynman’s approach to negative probability in quantum mechanics. Phys. Rev. A 49(3), 1562–1566 (1994). Scholar
  27. 27.
    Spencer, G., Shirley, P., Zimmerman, K., Greenberg, D.P.: Physically-based glare effects for digital images. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1995, pp. 325–334. ACM Press (1995)Google Scholar
  28. 28.
    Wald, I., et al.: OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Witt, A.N.: Multiple scattering in reflection nebulae. i - a Monte Carlo approach. Astrophys. J. Suppl. Ser. 35, 6 (1977)Google Scholar
  30. 30.
    Zhang, X., Lewis, M., Lee, M., Johnson, B., Korotaev, G.: The volume scattering function of natural bubble populations. Limnol. Oceanogr. 47(5), 1273–1282 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations