Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2013)
Google Scholar
Berta, Á., Bilicki, V., Jelasity, M.: Defining and understanding smartphone churn over the internet: a measurement study. In: Proceedings of the 14th IEEE International Conference on Peer-to-Peer Computing (P2P 2014). IEEE (2014)
Google Scholar
Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. In: NIPS Workshop on Private Multi-Party Machine Learning (2016)
Google Scholar
Danner, G., Berta, Á., Hegedűs, I., Jelasity, M.: Robust fully distributed mini-batch gradient descent with privacy preservation. Secur. Commun. Netw. 2018, 15 (2018). Article no. 6728020
CrossRef
Google Scholar
Danner, G., Jelasity, M.: Robust decentralized mean estimation with limited communication. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 447–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_32
CrossRef
Google Scholar
Danner, G., Jelasity, M.: Token account algorithms: the best of the proactive and reactive worlds. In: Proceedings of the 38th International Conference on Distributed Computing Systems (ICDCS 2018), pp. 885–895. IEEE Computer Society (2018)
Google Scholar
Dean, J., et al.: Large scale distributed deep networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1223–1231. Curran Associates Inc., USA (2012)
Google Scholar
Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.edu/ml
European Commission: General data protection regulation (GDPR) (2018). https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
Hegedűs, I., Berta, Á., Kocsis, L., Benczúr, A.A., Jelasity, M.: Robust decentralized low-rank matrix decomposition. ACM Trans. Intell. Syst. Technol. 7(4), 62:1–62:24 (2016)
CrossRef
Google Scholar
Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based peer sampling. ACM Trans. Comput. Syst. 25(3), 8 (2007)
CrossRef
Google Scholar
Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. In: Private Multi-Party Machine Learning (NIPS 2016 Workshop) (2016)
Google Scholar
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017
Google Scholar
Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of the 9th IEEE International Conference on Peer-to-Peer Computing (P2P 2009), pp. 99–100. IEEE, Seattle, Washington, USA, September 2009. Extended abstract
Google Scholar
Ormándi, R., Hegedűs, I., Jelasity, M.: Gossip learning with linear models on fully distributed data. Concurr. Comp. Pract. Exp. 25(4), 556–571 (2013)
CrossRef
Google Scholar
Roverso, R., Dowling, J., Jelasity, M.: Through the wormhole: low cost, fresh peer sampling for the internet. In: Proceedings of the 13th IEEE International Conference on Peer-to-Peer Computing (P2P 2013). IEEE (2013)
Google Scholar
Wang, J., Cao, B., Yu, P.S., Sun, L., Bao, W., Zhu, X.: Deep learning towards mobile applications. In: IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1385–1393, July 2018
Google Scholar