Skip to main content

Sleep/Wake Disturbances in Mild Traumatic Brain Injury Patients

Abstract

The continued research and practice of sleep medicine has provided insights into brain physiology, novel diagnostic tools, and innovative treatment options for poorly understood diseases. Sleep is broken down into a circadian rhythm pattern characterized by the three stages: maintenance mechanisms of the NREM cycle and the oscillation of phasic and tonic movements in the REM cycle. Recently, traumatic brain injury has been shown to negatively impact these normal sleep/wake cycles and to increase significantly the risk of comorbid disease. The link between TBI and sleep disorders has been established through the use of subjective measures of sleep disturbance such as the Pittsburgh Sleep Quality Index and through objective analysis like polysomnography. Case studies demonstrate that clinicians’ use of these types of assessments creates a more complete medical picture and treatment plan for TBI patients.

Keywords

  • Mild traumatic brain injury
  • Sleep disturbances
  • Excessive daytime sleepiness
  • Insomnia
  • Sleep disorders (care and treatment)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22436-3_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-22436-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   99.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002;6(2):97–111.

    PubMed  CrossRef  Google Scholar 

  2. Ouellet MC, Savard J, Morin CM. Insomnia following traumatic brain injury: a review. Neurorehabil Neural Repair. 2004;18(4):187–98.

    PubMed  CrossRef  Google Scholar 

  3. Pagel JF. Excessive daytime sleepiness. Am Fam Physician. 2009;79(5):391–6.

    CAS  PubMed  Google Scholar 

  4. Zhou Y. Abnormal structural and functional hypothalamic connectivity in mild traumatic brain injury. J Magn Reson Imaging. 2017;45(4):1105–12.

    PubMed  CrossRef  Google Scholar 

  5. Eriksson KS, Sergeeva OA, et al. Orexins/hypocretins and aminergic systems. Acta Physiol (Oxford). 2010;198(3):263–75.

    CAS  CrossRef  Google Scholar 

  6. von Economo C. Sleep as a problem of localization. J Nerv Ment Dis. 1930;71(3):249.

    CrossRef  Google Scholar 

  7. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Cohen M, Oksenberg A, Snir D, Stern MJ, Groswasser Z. Temporally related changes of sleep complaints in traumatic brain injured patients. J Neurol Neurosurg Psychiatry. 1992;55:313–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. George B, Landau-Ferey J, Benoit O, Dondey M, Cophignon J. Night sleep disorders during recovery of severe head injuries. Neurochirurgie. 1981;27:35–8.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Ron S, Algom D, Hary D, Cohen M. Time-related changes in the distribution of sleep stages in brain injured patients. EEG Clin Neurophysiol. 1980;48:432–41.

    CAS  CrossRef  Google Scholar 

  11. Brown ID, Tickner AH, et al. Effect of prolonged driving on overtaking criteria. Ergonomics. 1970;13(2):239–42.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Thomas M, Thorne D, Sing H, et al. The relationship between driving accidents and microsleep during cumulative partial sleep deprivation. J Sleep Res. 1998;7(Suppl 2):275.

    Google Scholar 

  13. Thomas M, Balkin T, Sing H, et al. PET imaging studies of sleep deprivation and sleep: implications for behavior and sleep function. J Sleep Res. 1998;7(Suppl 2):274.

    Google Scholar 

  14. Welsh A, Thomas M, Thorne D, et al. Effect of 64 hours of sleep deprivation on accidents and sleep events during a driving simulator. Sleep. 1998;21(Suppl 3):234.

    Google Scholar 

  15. Balkin T, Bleise P, Belenky G, Sing H, Thorne D, Thomas M, et al. Comparative utility of instruments for monitoring sleepiness related performance decrements in the operational environment. J Sleep Res. 2004;13:219–27.

    PubMed  CrossRef  Google Scholar 

  16. Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC. Quantification of sleepiness: a new approach. Psychophysiology. 1973;10:431–6.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–5.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburg sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1999;28:193–213.

    CrossRef  Google Scholar 

  19. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Tamanna S, Geraci SA. Major sleep disorders among women: (women's health series). South Med J. 2013;106(8):470–8.

    PubMed  CrossRef  Google Scholar 

  21. Carskadon MA, Dement WC, Mitler MM, Roth T, Westbrook PR, Keenan S. Guidelines for the use of the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep. 1986;9:519–24.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Thorpy M, Westbrook P, Ferber R, Fredrickson P, Mahowald M, et al. The clinical use of the multiple sleep latency test. Sleep. 1992;15:268–76.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Dunne L, Patel P, Maschauer EL, Morrison I, Riha RL. Misdiagnosis of narcolepsy. Sleep Breath. 2016;20(4):1277–84.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  24. International Classification of Sleep Disorders, Third edition. American Academy of Sleep Medicine; 2014.

    Google Scholar 

  25. Mitler MM, Gujavarty KS, Browman CP. Maintenance of wakefulness test: a polysomnographic technique for evaluating treatment in patients with excessive somnolence. Electroencephalogr Clin Neurophysiol. 1982;53:648–61.

    CrossRef  Google Scholar 

  26. Russo M, Stetz M, Swanson E, Stetz T. Excessive daytime sleepiness in mild traumatic brain injury patients (mTBI). Sleep. 2009;32:A311.

    CrossRef  Google Scholar 

  27. Aldrich M. Sleep medicine contemporary neurology Series, vol. 113: Oxford University Press; 1999.

    Google Scholar 

  28. Vitiello MV, Larsen LH, Moe KE, Prinz PN, Schwartz RS. The circadian body temperature rhythm of healthy older men and women is enhanced with increased aerobic fitness. Sleep Res. 1994;23:514.

    Google Scholar 

  29. Vitiello MV, Prinz PN, Schwartz RS. The subjective sleep quality of healthy older men and women is enhanced by participation in two fitness training programs: a nonspecific effect. Sleep Res. 1994;23:148.

    Google Scholar 

  30. Vitiello MV, Prinz PN, Schwartz RS. Slow wave sleep but not overall sleep quality of healthy older men and women is improved by increased aerobic fitness. Sleep Res. 1994;23:149.

    Google Scholar 

  31. Vitiello MV, Larsen LH, Moe KE, Prinz PN, Schwartz RS. Sleep quality and circadian temperature rhythm of healthy older adults improve following successful aerobic training. Sleep Res. 1996;25:115.

    Google Scholar 

  32. National Sleep Foundation. Sleep in America poll. 2005. http://www.sleepfoundation.org/_content/hottopics/Sleep_Segments.pdf.

    Google Scholar 

  33. Mendelson WB. Hypnotic medications: mechanisms of action and pharmacologic effects. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: Saunders; 2005.

    Google Scholar 

  34. Kryger MH, Roth T, Dement WC. Principals and practice of sleep medicine. 4th ed. Philadelphia: Saunders; 2005.

    Google Scholar 

  35. Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS One. 2013;8(1):e54163.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Sayer NA, Rettmann NA, Carlson KF, Bernardy N, Sigford BJ, Hamblen JL, et al. Veterans with history of mild traumatic brain injury and posttraumatic stress disorder: challenges from provider perspective. J Rehabil Res Dev. 2009;46(6):703–16.

    PubMed  CrossRef  Google Scholar 

  37. Ruff RL, Riechers RG, Ruff SS. Relationships between mild traumatic brain injury sustained in combat and post-traumatic stress disorder. F1000 Med Rep. 2010;2:64.

    PubMed  PubMed Central  Google Scholar 

  38. Thomas ML, Sing HC, Belenky G, Holcomb HH, Mayberg HS, Dannals RF, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 hours of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–52.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Thomas ML, Sing HC, Belenky G, Holcomb HH, Mayberg HS, Dannals RF, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. II. Effects of 48-72 hours of sleep deprivation on waking human regional brain activity. Thalamus Relat Syst. 2003;2(3):199–229.

    CrossRef  Google Scholar 

  40. Minors D, Waterhouse J, Akerstedt T, Atkinson G, Folkard S. Effect of sleep loss on core temperature when movement is controlled. Ergonomics. 1999;42:647–56.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Moldofsky H. Sleep and the immune system. Int J Immunopharmacol. 1995;17(8):649–54.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Spiegel K, Sheridan JF, et al. Effect of sleep deprivation on response to immunization. JAMA. 2002;288(12):1471–2.

    PubMed  CrossRef  Google Scholar 

  43. Balachandran D, Ewing SB, Murray BJ, LeBeau L, Mullington JM. Human host response during chronic partial sleep deprivation. Sleep. 2002;25:A106–7.

    Google Scholar 

  44. Gangwisch JE, Malaspina D, et al. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep. 2005;28(10):1289–96.

    PubMed  CrossRef  Google Scholar 

  45. Orthmann JL, Rogers NL, et al. Changes in plasma growth hormone levels following chronic sleep restriction. Sleep. 2001;24:A248–149.

    Google Scholar 

  46. Spiegel K, Leproult R, et al. Adaptation of the 24-h growth hormone profile to a state of sleep debt. Am J Physiol Regul Integr Comp Physiol. 2000;279(3):R874–83.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Spiegel K, Tasali E, et al. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–50.

    PubMed  CrossRef  Google Scholar 

  48. Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1:e62.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  49. Montano N, Cogliati C, Gnecchi-Ruscone T, Raggi F, Lista C, Vicenzi A, et al. One night sleep deprivation alters primarily cardiac sympathovagal balance. Sleep. 2005;28:A134.

    Google Scholar 

  50. Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res. 2003;12:1–12.

    PubMed  CrossRef  Google Scholar 

  51. Horne JA, Pettitt AN. High incentive effects on vigilance performance during 72 hours of total sleep deprivation. Acta Psychol. 1985;58:123–39.

    CAS  CrossRef  Google Scholar 

  52. Thorne D, Thomas M, Sing H, et al. Accident rate, attention and performance in a driving simulator during 64 hours of progressive sleep deprivation. J Sleep Res. 1997;26(Suppl 1):634.

    Google Scholar 

  53. Thorne D, Thomas M, Sing H, et al. Driving-simulator accident rates before, during, and after one week of restricted night sleep. Sleep. 1998;21(Suppl 3):235.

    Google Scholar 

  54. Balkin T, Thorne D, Sing H, Thomas M, Redmond D, Wesensten N, et al. Effects of sleep schedules on commercial motor vehicle driver performance. DOT Tech Report, FMCSA; DOT-MC-00-133 May 2000.

    Google Scholar 

  55. National Highway Traffic Safety Administration. Crashes and fatalities related to driver drowsiness and fatigue. Washington, DC: US Department of Transportation; 1994.

    Google Scholar 

  56. Russo MB, Sing H, et al. Visual neglect: occurrence and patterns in pilots in a simulated overnight flight. Aviat Space Environ Med. 2004;75(4):323–32.

    PubMed  Google Scholar 

  57. Russo M, Kendall A, Johnson D, Sing H, Escolas S, Santiago S, et al. Visual perception, psychomotor performance, and complex motor performance during an overnight air refueling simulated flight. Aviat Space Environ Med. 2005;76(Suppl 1):92–103.

    Google Scholar 

  58. Russo M, Kendall A, Johnson D, Sing H, Escolas S, Hall S, et al. Relationships among visual perception, psychomotor performance, and complex motor performance in military pilots during an overnight air-refueling simulated flight: implications for automated cognitive workload reduction systems. In: Schmorrow D, editor. Foundations of augmented cognition. New Jersey: CRC Press; 2005. p. 174–82.

    Google Scholar 

  59. Russo M, Thomas M, Thorne D, Sing H, Redmond D, Rowland L, et al. Oculomotor impairment during chronic partial sleep deprivation. Clin Neurophysiol. 2003;114:723–36.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Rowland L, Thomas M, Thorne D, Sing H, Kritchmar J, Davis HQ, et al. Oculomotor responses during partial and Total sleep deprivation. Aviat Space Environ Med. 2005;76(Suppl 1):C104–13.

    PubMed  Google Scholar 

  61. Lamberg L. Knitting up the raveled sleeve of care: role of sleep and effects of its lack examined. JAMA. 1996;276(15):1205–7.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Maczaj M. Pharmacological Treatment of Insomnia. Drugs. 1993 Jan;45(1):44–55.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Janicak PG, Marder SR, Pavuluri MN. Principles and practice of psychopharmacotherapy: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  64. Fuccella LM. Bioavailability of temazepam in soft gelatin capsules. Br J Clin Pharmacol. 1979;8(1):31S–5S.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

Ian C. Murphy was a coauthor in the chapter on this subject that appeared in the first edition of this book, and that first edition chapter served as the basis for this updated and revised second edition chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Krainin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Krainin, J., Morrison, A.A., Russo, M.B. (2020). Sleep/Wake Disturbances in Mild Traumatic Brain Injury Patients. In: Tsao, J. (eds) Traumatic Brain Injury. Springer, Cham. https://doi.org/10.1007/978-3-030-22436-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22436-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22435-6

  • Online ISBN: 978-3-030-22436-3

  • eBook Packages: MedicineMedicine (R0)